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Abstract

This paper makes a humble attempt to put currency hedging in a more realistic setting

by considering different hedging approaches. Continuously one-to-one hedging is an ex-

tremely costly procedure which is why retail investor are advised to construct an optimal

basket of currencies for a predetermined period. The literature has recently been focusing

on minimising either the minimum or the mean-variance of an international hedged port-

folio with a basket of foreign currencies. Other risk measures applied to hedging are Value

at Risk and Tail Value at Risk. One could argue that these measures are not capable of

entirely capturing what an retail investor perceives as risk. Currency hedging is therefore

put in a brand new perspective by considering the state of the art iVaR risk measure.

It was introduced by the Belgian financial technology company InvestSuite and embraces

the retail perception of risk in a portfolio: the frequency of drawdowns, their magnitude,

and the time to recover from them. A rather ambiguous concept in the literature is the

definition of hedging applied to the foreign currency market from the perspective of a

retail investor. The realistic problem setting inhibits strict bounds for the asset allocation

which implies that some methodologies might not be as optimal anymore from a risk per-

spective. In particular, the iVaR optimisation problem is compared to a static benchmark

and a minimum variance portfolio. This paper does consider different estimates for the

covariance matrix. These methods are compared on their out of sample realised volatility,

hedging effectiveness, Sharpe ratio, Calmar and pain ratio, cumulative drawdown, aver-

age drawdown and average drawdown reduction. Finally, Hansen’s bootstrapped model

confidence set is employed to determine if the difference is also statistical significant. This

paper finds sufficient evidence that results obtained from constructing a dynamic hedging

strategy in a strict setting are not statistically different. These findings should not be

attributed to an ill definition or the appropriateness of different methodologies, but rather

hinges to the problem setting. For instance, retail investors that seek to mitigate their risk

ought not to increase the FX exposure above the level of their initial investment in order to

gain diversification benefits. Furthermore, the FX market is characterised by co-movement

and clusters of shared risk. Once these strict bounds are relaxed, the methodologies will

gain in their effectiveness.
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Chapter 1

Introduction

Since the Bretton Woods collapsed in 1973, investors that hold an international portfolio

of financial instruments bear additional risk of trading foreign currencies for their national

currency. The foreign exchange market (FOREX, FX) is the largest financial market these

days and therefore also extremely liquid. The bulk of these transactions occur only in eight

currencies, i.e. U.S. the dollar (USD), the EURO (EUR), the British pound (GBP), the

Japanese yen (JPY), the Swiss franc (CHF), the New Zealand dollar (NZD), the Australian

dollar (AUD) and the Canadian dollar (CAD), while approximately 182 circulate around

the world (Petropoulos et al. (2017)). This significantly facilitates trading which appeals

to speculants and arbitrageurs (Ozturk et al. (2016)). Nevertheless, retail investors aim

to have a smooth ride and business strive to hedge FX risk. One of the main drivers of

these FX time series is a country’s monetary policy. Central banks attempt to maintain

price stability by influencing the money supply, interest rates and inflation. Beine et al.

(2006); Égert and Kočenda (2014), amongst others, found empirically that FX time series

are materially influenced by monetary, geopolitical and economic factors and therefore

serve as an overall economic activity aggregator. This real exchange risk ought to be

avoided by risk minimising agents. The continuously hedging process is however costly

and sometimes even not feasibe. Therefore, according to the investor’s risk tolerance, it is

optimal to always hold a basket of foreign currencies. The question then remains: How do

investors perceive risk such that they can determine their optimal basket of currencies?

Investors in general strive to have monotonic growth such that their time in the market

is maximised and they are not forced to liquidate their portfolio because they could not

stomach the volatility. Traditional approaches for measuring risk turn out to be not

perfectly aligned to what investors perceive as risk. For instance, risk is seen as both

the frequency and severity at which losses occur and therefore are asymmetric. Using

the returns’ variance would be inappropriate since investors might not care or even seek

positive volatility. Value at Risk (VaR) and Expected Shortfall (ES) are asymmetric but
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fail to incorporate the time dimension, that is the total period a portfolio is under water,

that is the loss compared to the previous high water mark. Retail investors have not

only the tendency to compare the best and worst absolute levels of their assets, but also

consider the time they are (not) at these levels. The most natural risk measure to model

investors’ behaviour is therefore the integrated time value at risk (iVaR) which takes these

three dimensions into account. In other words, the optimal portfolio is constructed in a

way that minimises the average drawdown compared to the running maximum.

The contribution of this paper to the academical literature is twofold. It is the first time

that an iVaR objective has been applied to currency hedging. Second, applying different

optimisation methodologies when the problem exhibits strict bounds seems not to give

any significantly different results in the expected path of the basket. The remainder of the

paper is structured as follows: Both the history of different risk measures and how currency

hedging is described in literature are presented in chapter 2. Next, chapter ?? elaborates on

the methodology used for calculating an optimal iVaR portfolio, estimating a regularised

(Ridge and Lasso) variance-covariance matrix and the calibration of both th constant and

dynamical correlation coefficient (CCC and DCC) generalised autoregressive conditional

heteroskedastic in order to predict the variance-covariance matrix. This chapter also

describes the model confidence set such that we statistically can compare these different

methodologies according to the chosen metric. The data description and results are given

in chapter ??. Finally, the concluding findings of this paper are summarised in chapter

??.
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Chapter 2

Literature review

2.1 Portfolio optimisation: an evolution in risk mea-

sures

2.1.1 Variance as a risk measure

Asset managers and robo-advisors today still make use of Markowitz’ mean-variance port-

folio optimisation framework. Harry Markowitz introduced a mathematical methodology

and algorithm Markowitz (1952, 1959) for the optimal allocation of assets under uncer-

tainty based on the second central moment µ2, i.e. using the variance as a risk measure

σ2p = µp,2 =

∫
R
(x− µ)2dFXp(x) (2.1)

where Xp is the portfolio’s return which is assumed to be normally distributed with mean

µ = E[Xp], also known as the first raw moment, the variance σ2p and dFXp(x) the normal

probability function. Today, this theory is famously known as modern portfolio theory

(MPT) which lays down the optimal trade off between expected return and variance also

referred to as the mean-variance tradeoff. It has a wide range of applications in financial

theories (e.g. Capital Asset Pricing and Efficient Market Hypothesis) and mathematical

finance (e.g. in option pricing where assets are considered to follow a geometric brownian

motion and where variance if one of the most important parameters Black and Scholes

(1973)).

MPT assumes that investors have access to all financial instruments in the entire world

and therefore can optimally choose the weights w assigned to each instrument such that

the ratio expected return over risk (i.e. portfolio’s variance) is optimal which is also known

as the Sharpe ration. For instance, a portfolio that has the same expected return but a

higher variance is not optimal. As a result, the efficient frontier could be obtained by

calculating the best ratio return versus risk for every possible expected return. Since
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returns are assumed to be normally distributed, this objective function is always convex.

Finally, the straight line starting from the risk-free return and tangent to the efficient

frontier is maximises the Sharpe ratio and composes all combinations of the risk free

return and the optimal risk portfolio.

Besides the mathematical framework, Markowitz also introduced the Critical Line

Algorithm (CLA) which solves this quadratic optimisation problem. This optimisation

method in fact solves a series of different convex problems and attempts to improve the

Sharpe ratio by adding each time a financial instrument. In doing so, the narrative of

considering an overall risk-adjusted portfolio and not merely the sum of risky financial

instruments, got established. Markowitz (1952) was one of the most influential papers to

consider a quantitative approach to the investment problem.

Although MPT has many appealing properties, both quantitative and qualitative, it

lacks realistic assumptions. The mean-variance framework for instance implicitly assumes

that the assets’ variances are all finite and constant throughout time. The true variance-

covariance matrix Σ has to be full-rank as well in order to calculate the optimal portfolio.

This means that in this financial market we cannot replicate an asset’s time series by

dynamically trading the other securities. Furthermore, assets have positive variances which

implies that Σ is positive definite. Another drawback of the mean-variance framework,

is the assumption of the existence of an unbiased estimate of the expected return. This

thesis therefore only considers obtaining the global minimum of the portfolio’s volatility

σp as objective function by choosing the optimal weights w∗ ∈ Θ with Θ the set of all

possible combinations for N assets Θ ⊂ RN . Given the true variance-covariance matrix

Σ, the convex optimisation problem is formulated as

argmin
w∈Θ

wTΣw,

s.t.wT1 = 1.

(2.2)

The used risk measure implicitly assumes that returns are normally distributed while these

are most likely to be leptokurtic distributed, i.e. a kurtosis higher than three. Value at risk

and expected shortfall try to address these shortcomings by only considering the left tail

of the distribution. In addition, variance is symmetric and sign-ignorant whereas investors

most likely care less about upside volatility compared to downside volatility and shouldn’t

punish it in the same manner.

2.1.2 Semivariance as risk measure

In the same period Roy (1952) defined semi-variance as the risk measure that should be

used in order to make an optimal allocation between financial instruments. Markowitz
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even recognised the importance of Roy’s work by stating that if he published his work

earlier, the optimal set of mean-variance porfolios would have been called the set of mean-

semi-variance portfolios (see Nawrocki (1999)). This risk measure is formally defined as

SVp(y) =

∫
R
{(x− y)2}+dFXp(x) (2.3)

where y ∈ R is the threshold at which investors start to care about potential losses. A

well known variant of this risk measure is the lower half of the variance, i.e. substituting

y for µ

SVp(µ, α) =

∫
R
{(x− µ)2}+dFXp(x). (2.4)

Notice that for symmetrical probability distributions the relationship σ2p = 2SVp(µ) holds.

The risk measure SVp(µ) could also be interpreted as a portfolio’s skewness measure since

the latter relationship won’t hold for skewed underlying distributions.

2.1.3 Lower partial moments as risk measure

While the semi-variance risk measure is a generalisation of the second central moment, by

including skewness, C Fishburn (1977) took it one step further by defining lower partial

moments (LPM) in 1970

LPMp(µ) =

∫
R
{(x− µ)α}+dFXp(x). (2.5)

where α ∈ R. Notice that alpha is now is a hyperparameter compared to squaring the

difference. By adding this flexibility, some of the issues that were accompanied by previous

loss risk measures are resolved.

2.2 Currency Hedging

Hedging activities typically take place in the futures market where two parties come to

an agreement to buy and sell a given amount of the underlying at an agreed upon cer-

tain date in the future, at an agreed upon price, and at a given location. This market

brings predominantly hedgers, speculators and arbitrageurs together. Hedgers are typi-

cally producers, consumers or merely have the ownership of the underlying and wish to

get mitigate the borne price risk. Arbitrageurs and speculants, on the other hand, want

to exploit mis-pricings in this market and try to gain alpha returns. Those two groups are

therefore fundamentally different in nature, hedgers are risk minimisers while speculants

and arbitrageurs are willing to take on additional risk to maximise profits.

In case that markets are efficient, futures prices have to be the unbiased estimator

of spot prices at the maturity of the contract which resembles to the cointegration of the
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current futures prices and the future spot prices. For a complete overvies, this paper refers

to Dwyer Jr and Wallace (1992); Chowdhury (1991); Crowder and Hamed (1993). The

literature is extensive in finding answers where exactly price discovery takes place. For an

overview, please consult .

Since this paper concerns more about the inherent long-term nature of the asset class

compared to the intraday movements in the foreign currency market, the focus will be on

finding a basket of currencies that minimise certain risk measures. Tong (1996) showed

prices in these two markets are closely tied by the arbitrage forces. The difference between

the futures and spot market is therefore neglected and only spot market data is used. The

next three sections elaborate on more general hedging approaches in both the univariate

and single-variate setting as well as a measure the determine the hedging effectiveness.

2.2.1 Univariate hedging

In case an investor is interested in buying a financial instrument which is denominated

in a foreign currency but wishes to minimise this FX, he might continuously be buying

and selling futures contracts. This however could turn out to be a costly process. An-

other possibility is to periodically minimise the aggregate portfolio’s risk Yt = Xt − δtYt,

where δt is the hedge ratio and (Xt)t∈N, (Yt)t∈N are respectively the return’s discrete

stochastic processes of a financial asset and the foreign currency’s futures contract with

t ∈ {0, 1, ..., T −1, T}. This obviously raises the question: What type of risk are we willing

to minimise for? In general the investor wants to minimise the fluctuations that are borne

form the additional FX risk. Johnson (1976) expresses the conditional variance of this

portfolio as

Var(Zt|Ft−1) = Var(Xt|Ft−1)− 2δtCov(X1,t, Yt|Ft−1)− δ2tVar(Yt|Ft−1) (2.6)

where Ft−1 is the filtration available up and until time t− 1. The formal definition of the

sigma-algebra is given in section (3.4.1). In order to determine the optimal hedge ratio

(OHR), we calculate the partial derivatives with respect to δt and subsequently put the

equation equal to zero. After rearranging, we obtain

δt|Ft−1 =
Cov(X1,t, X2,t|Ft−1)

Var(X2,t|Ft−1)
. (2.7)

In case the optimal hedge ratio would not be dependent on t, it would become a static

hedge. Nevertheless, financial markets typically inhibit volatility clusters and changing

correlations structures among random variables. Multivariate distributions will change

throughout time by the arrival of new information and a static hedge will be inadequate

in reducing the portfolio’s risk. The literature shows that hedge ratios are typically not
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stationary in time. For an overview, see Baillie and Myers (1991); Cecchetti et al. (1988);

Myers (1991); Kroner and Sultan (1993); Choudhry (2003); Park and Switzer (1995).

2.2.2 Multi-variate hedging

For a while the literature focused only on single hedges, while investors hold large portfolios

of different type of assets denominated in various currencies. Optimally choosing the

position taken in each currency to reduce risk of the aggregate portfolio is paramount.

As Markowitz pointed, we cannot isolate assets from each other and therefore ignore the

covariance structure. Estimation procedures which measure hedge ratios for each hedging

instrument in isolation tend to over-estimate the number of futures contracts required to

hedge the cash position and lead to a suboptimal mix in the composition of the hedge

portfolio. Gagnon et al. (1998) consider a situation where an N -currency portfolio is

hedged with N -futures contracts. This study is extremely relevant for this research which

is why we borrow some of the equations therein. In the most general setting, we have

a space of N log returns of the spot currency market (Xt)t∈N = (X1,t, ..., XN,t)t∈N with

respect to the domestic currency and (Yt)t∈N = (Y1,t, ..., YN,t)t∈N the futures’ log returns.

It is assumed that every currency pair on the spot has also a liquid futures market. Given

a multi-period setting, it is possible to express the hedged portfolio’s log return by

Zt = XT
t γt−1 −YT

t δt−1 (2.8)

where the observation period is discrete t = 1, ..., T and γt−1, δt−1 are respectively the

N × 1 vector of spot and futures currency holdings at time t− 1. The (N + 1)× (N + 1)

covariance matrix at time t conditional upon the filtration Ft−1 available at time t− 1 of

the futures holdings with the spot holdings is given by

Σt|Ft−1 =

[
σ2x,t Σxy,t

ΣT
yx,t Σyy,t

]
(2.9)

which is a partitioned matrix. The block matrix Σyy,t denotes the N × N conditional

covariance matrix of the futures’ returns. Σxy,t represents the 1 × N vector of condi-

tional covariances of the spot portfolio returns XT
t−1γt−2 with every single futures’ return

(Y1,(t−1), ..., YN,(t−1)) given the filtration Ft−1. Finally, σ2x,t presents the conditional vari-

ance of the spot portfolio returns ( XT
t−1γt−2). Since the multivariate distribution of

returns might change, Σt in equation (2.9) is actually an empirical estimation, i.e. Σ̂t,

with respect to all information available at time t− 1 of the true covariance for the next

period t.
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Gagnon et al. (1998) assume that the investor is a mean-variance utility maximiser,

which resembles to the following optimisation problem:

argmin
δ

[
E[Zt|Ft−1]−

1

2
ϕVar(Zt|Ft−1)

]
(2.10)

where ϕ > 0 denotes the investor’s risk tolerance. By taking the partial derivatives with

respect to δ and setting this equation equal to zero, we obtain the first order condition

for a maximum

0 = ϕ[Σyy,tδt −Σxy,t]− (E[Y t|Ft−1]− Y t−1) (2.11)

By rearranging the above expression, it is possible to obtain the optimal hedge ratio δt

conditional upon the information available at time t− 1, i.e. Ft−1

δt = Σ−1
yy,tΣxy,t −

1

ϕ
Σ−1

yy,t (E[Y t|Ft−1]− Y t−1) . (2.12)

Notice that Σyy,t has to be non-singular and therefore full-rank. In case some vectors of

returns become co-linear, shrinkage methodologies ought to be applied to obtain a robust

estimation (see section (3.2)).

From the moment the returns are assumed to be a martingale, the above expression

simplifies to

δt = Σ−1
yy,tΣxy,t. (2.13)

In other words, the martingale assumption is sufficient for the mean-variance optimal

hedge to coincide with the minimum variance hedge in this multi-period setting. Hence,

having access to information up and until time t − 1 is paramount. Notice that this

assumption is not far fetched, since it is expected to earn the risk-free rate on money

put in the bank account. The theory of interest rate parity (IRP) is essential in foreign

exchange markets because it connects interest rates, spot exchange rates, and foreign

exchange rates. This theory implies that when the FX market is in a equilibrium, the

expected return on domestic assets will equal the exchange rate-adjusted expected return.

By the forces of no arbitrage, this essentially means that no premium over the risk-free

rate should be expected.

Given foreign exchange market equilibrium, the interest rate parity condition implies

that the expected return on domestic assets will equal the exchange rate-adjusted ex-

pected return on foreign currency assets. Investors then cannot earn arbitrage profits by

borrowing in a country with a lower interest rate, exchanging for foreign currency, an

Due to the importance of the martingale assumption, we refresh the readers’ memory.

A stochastic process (Y1,t)t∈N on the filtered probability space (Ω,F ,P,F) is considered a

martingale if it satisfies the following conditions:
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1. Y1,t is adapted to filtration (Ft)t∈N+ ,

2. E[Y1,t|Fs)] = Y1,s), for all s ≤ t with s, t ∈ N,

3. E[|Y1,t|] <∞ for all t ∈ N.

In other words, it is possible to observe the process Y1,t at every point in time. However,

this information will not lead to an increase in the expectation of the process.

2.2.3 Hedging effectiveness

The previous two sections established the general hedging framework for which an esti-

mation has to be calculated. In case the considered stochastic processes are martingale,

the mean-variance hedge actually coincides with the minimum variance portfolio. An in-

vestor who is a mean-variance utility maximiser will attempt to estimate the empirical

covariance matrix and assign the weights to the currencies in his universe that minimise

the basket’s variance. The question still remains, what is an accurate estimate for the

variance-covariance matrix? Besides the classical unbiased sample estimator

Σ̂ =
1

T − 1

T∑
t=1

(Xt − µX)(Xt − µX)T (2.14)

where T is the sample size, µX is the N×1 mean-vector of the stochastic vector of random

variablesX, section (3.2.0.1), (3.3) and (3.4) present other candidate estimators employed

in this thesis.

In reality, hedging is sometimes performed by applying the rule of thumb of selling a

predefined fraction of the current FX exposure. Comparing this static hedge to a dynamic

hedging strategy requires measure. In addition, we need compare these dynamic hedging

strategies, i.e. the different covariance estimators, with each other as well. Traditionally,

the hedging effectiveness (HE) index is measured by

HE =

(
Var(X)−Var(Y )

Var(X)

)
(2.15)

where the benchmark and hedged portfolios are respectively denoted by X and Y .

The main purpose of this research however is to challenge the iVaR risk measure in

the setting of hedging FX exposure. Retail investors in particular wish to have a smooth

ride and should not speculate on the FX market since no premiums are to be expected.

Using HE as only measure to determine what methodology is superior, is wrong since it

is not using variance as objective function. A second measure used in this research is the
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drawdown reduction index

DR =

(
iV aR(X)− iV aR(Y )

iV aR(X)

)
. (2.16)
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Chapter 3

Methodology

3.1 Average drawdown

This section introduces the expected drawdawn which we are optimising for in the iVaR

framework. First of all, the notion of an Absolute Drawdown has to be defined. The

concept of expected drawdawn is explained thereafter.

3.1.1 Drawdown for a single sample path

The stochastic return vector for an universe of N assets that is discrete in time and

continuous in space is denoted by (Xt)t∈N = (X1
t , ..., X

N
t )t∈N whereas the weights are

represented by (wt)t∈N = (w1
t , ..., w

N
t )t∈N and the asset prices (St)t∈N = (S1

t , ..., S
N
t )t∈N.

As mentioned previously, the investment horizon is discrete {0, 1, ..., T − 1, T} and has

T + 1 subintervals with T ∈ N where the uncompounded returns for each single asset

are obtained by Xi
t = Si

t/S
i
t−1 − 1. It easy to compute the in-sample variance-covariance

matrix ΣT for the resulting time series Xt.

At any moment t ∈ {0, 1, ..., T − 1, T} the portfolio rate of return is obtained by

applying the scalar product Xp
t = Xt ·wt for a multi-period model whereas for one-period

model w is independent of t. On the portfolio level, the uncompounded cumulative rate

of returns Xp
t for a subinterval t is expressed as

Yt =

{
0, t = 0,∑t

k=1X
p
t , t = 1, ..., T.

(3.1)

Chekhlov et al. (2005) then formally defined the absolute drawdown (AD) for a single

sample path as

AD(YT ) = ψT = (ψ1, ..., ψT ), ψt = max
j={0,...,t}

{Yj} − Yt (3.2)
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where YT = (Y1, ..., YT ) and ψT = (ψ1, ..., ψT ) are in fact realisations of respectively

(Yt)t∈N and (ψt)t∈N time series up until time T . Notice that ψ0 is always equal to zero

which is therefore not included in the drawdown time series ψ.

Considering the scalar multiplication λYT = (λY1, ..., λYT ) and the scalar addition

a +YT = (a + Y1, ..., a + YT ) with λ, a ∈ R, Chekhlov et al. (2005) proved that the AD

satisfies the properties of a deviation measure, that is

1. Nonnegativity: AD(Y) ≥ 0.

2. Insensitivity to constant shift: AD(a+Y) = AD(Y)

3. Positive homogeneity: AD(λY) = λAD(Y), ∀λ ≥ 0.

4. Convexity: if Y λ
t = λY i

t +(1−λ)Y j
t is a linear combination of any two sample paths,

i.e. i, j = 1, ..., N and t = 0, 1, ..., T of uncompounded cumulative rates of returns,

with λ ∈ [0, 1], then AD(Y λ
t ) ≤ λAD(Y i

t ) + (1− λ)AD(Y j
t ).

The proof of these properties goes as follows: the first three properties are direct

consequences from the definition of the AD functional defined in equation (3.2). The last

property, on the other hand, is proven by: max0≤τ≤t{λY i
τ+(1−λ)Y j

τ } ≤ λmax0≤τ≤t{Y i
τ }+

(1− λ)max0≤τ≤t{Y j
τ } with λ ∈ [0, 1].

3.1.2 Minimising the expected drawdown

In order to formally define the expected drawdown (or in sample drawdown) for a sample

path, we would, in theory, integrate the probability weighted drawdowns over each state.

Our setting is discrete and no probability distribution is assumed beforehand. Therefore,

we assume that all observed drawdowns are signals for future drawdowns — sample paths

are not noisy — and the historical paths are representative. The expected drawdown is

then expressed as

E[ψT (w)] =
1

T

T∑
t=1

ψt(w). (3.3)

Remember that ψ, defined in equation (3.2), is a non-linear function of the portfolio’s

weights w. Notice that the average of the drawdown process ψT (w) is in fact the temporal

average, i.e. E[ψT ] = ψT . Hence, the stochastic process (ψt)t∈N is assumed to be ergodic.

However, iVaR is an ex ante optimisation methodology whereas the average drawdown is

an ex post risk measure. iVaR is therefore using the ensemble mean by conditioning on

paths realised at time t, i.e. Ft.

A few extensions to the temporal average
1

T

∑T
t=1 atψt(w) are still possible:

1. Exponentially weight at the historical drawdowns, i.e. more recent drawdowns are

more relevant;
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2. Volatility weight the historical drawdowns at = σt/σ;

3. Only include drawdowns when particular conditions are satisfied, e.g. VIX > 30%.

Finding the optimal weights w that minimise the expected drawdawn, i.e. iVaR, is

the solution to the following linear programming (LP) problem

min
w

E [ψ(w)]

s.t. ψt = mt −wTSt

mt ≥ mt−1

mt ≥ wTSt

wT1 = 1

w ≥ 0

(3.4)

To ease notation, St represents the realisation of the stochastic vector (Ss)s∈N up until

time t and has dimensions N × t. Notice that the AD functional could also be written as

ψt, i.e. ψt = max (maxτ<t(X
p
τ )−Xp

t , 0) which is a non-linear function of the portfolio’s

path. By introducing the instrumental variable mt that models the portfolio’s monotonic

growth, the problem is simplified to an LP.

3.2 Shrinkage of the covariance matrix: Ridge and Lasso

The minimum variance optimisation problem inhibits several drawbacks. First and fore-

most, we have to estimate the variance-covariance matrix Σ̂ from the given time series

because the true Σ is unknown. This boils down to the estimation of N(N +1)/2 param-

eters. Therefore, w∗ has to be validated out of sample to mitigate the risk of overfitting

since we are using an estimation, i.e. Σ̂ in equation 2.2. Next, the estimated variance-

covariance matrix Σ̂ might become singular when we consider a large number of securities.

Equation 2.2 might be unsolvable when Σ̂ is not full-rank and thus Σ̂−1 doesn’t exist. This

issue might occur when K is large compared to T . Ledoit and Wolf (2003) state that Σ̂

will, most likely, become numerically instable and contain severe estimation errors when

the time series’ length T is not 10 times larger than the number of assets N .

In statistical modelling it is common to use regularisation techniques to avoid the

overfitting of the estimated coefficients. This is achieved by using penalty functions for

the weight vector which promotes sparsity among the coefficients. Therefore this paper

augments Markowitz’s objective function by using penalty functions for the calibration of

w∗

argmin
w∈Θ

{
wTΣw+ λ

N∑
i=1

f(wi)

}
(3.5)
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subject to wT1 = 1

where f(wi) represents the penalty function to asset i’s weight wi and λ is the regularising

constant. The resulting estimation of w∗ and σp will be both more robust and accurate.

By using specific penalty functions, one can also take into account transaction costs in-

duced by trading. In particular the L2-norm, also known as the RIDGE penalisation,

incorporates the impact of order flow imbalances. The L1-norm, also known as the Least

Absolute Shrinkage and Selection Operator (LASSO), on the other hand, considers the

bid-ask spread of single trades Caccioli et al. (2016).

3.2.0.1 Regularised portfolio Optimisation: The Elastic Net

In this section, we consider the Elastic Net regularisation method to calibrate a sparse

optimal portfolio. This method actually combines the LASSO and the RIDGE method.

Therefore, this paper considers de facto three regularising methods. In general, the regu-

lariser essentially restricts the admissable set w ∈ Θ by penalising large weights. This can

be seen in the following equation where the Elastic Net is essentially a weighted average

of the L1-norm and L2-norm for f in equation 3.5

λ

N∑
i=1

f(wi) = λ

N∑
i=1

{
0.5 (1− ϕ) w2

i + ϕ |wi|
}
, where ϕ ∈ [0, 1]. (3.6)

Whenever ϕ is put to one, we obtain the LASSO regularisation method which has several

advantages:

1. It controls the total amount of assets that are being shorted. Increasing the values

of λ causes the construction of portfolios with less shorting.

2. Sparsity in assets is promoted. In other words, the LASSO penalty performs asset

selection because the penalty function is singular at the origin and allows shrinkage

to exactly zero.

3. Feature selection mitigates the risk of multicollinear returns.

On the other hand, the disadvantages of LASSO are:

1. If there are more assets than data points, then it selects at most N features;

2. It experiences difficulties in group selection since it will identify only one feature of

that group;

3. In general, LASSO is not effective when it is not possible to short sell an asset.

4. The bias generated by LASSO is material when the coefficient in absolute value is

large (see Fan and Li (2001).
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The Ridge penalisation is obtained when ϕ is equal to zero. The main advantages of this

method is that it is able to address the risk of not having a full-rank matrix. In doing so,

the RIDGE penalisation will perform grouped selection. On the other hand, it has several

disadvantages:

1. It lacks model interpretability.

2. It does not promote sparsity.

3.3 The EWMA covariance matrix

JP Morgan’s RiskMetrics used to forecasts covariances and variances using an exponen-

tially weighted moving-average (EWMA) model. This model assigns the largest weights

to the most recent observations and lets the weights decrease exponentially over time.

It differs significantly with the traditional unbiased estimator of the variance-covariance

matrix on the effect of recent events on the volatility compared to events from the distant

past. Also, the effect on volatility of a single given observation declines at an exponential

rate. To put it differently, the EWMA covariance matrix includes additional information,

that is the order of the observations (X1,t, ..., XN,t) and (X1,t+1, ..., XN,t+1), while this in-

formation is neglected in the traditional unbiased estimator. This estimator is furthermore

extremely sensitive to the current training set. For instance, if a stressed period would

suddenly falls out of the training set, this could have a significant influence. The converse

is also true, if the shock is still in the training set while the market regime has clearly

changed, the forecasted covariance matrix will remain at an artificially high level.

The EWMA estimate of the covariance matrix is given by

Σ̂T =
(1− λ)

(1− λ)T−1

T∑
t=1

λt(Xt − µX)(Xt − µX)T

= (1− λ)(XT − µX)(XT − µX)T + λΣ̂T−1

(3.7)

where T represents the sample size and the most recent observation and λ, with 0 < λ < 1

denotes the decay factor that determines the relative weight assigned to the observations.

RiskMetrics suggests to use λ = 0.94 for a one-day forecast.

3.4 Forecasting volatility and correlation coefficients

The flexibility feature of dynamically hedging stems from the modelling of the price Si
t

or returns Xi
t time series. This section will therefore first introduce the most impor-

tant elements of time series analyses. Next, the (generalised) autoregressive conditional

heteroskedasticity is formally defined to model the time dependent stochastic volatility

parameter.
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3.4.1 The building blocks for time series analysis

As mentioned previously, we observe a discrete-time stochastic process (Xt)t∈N which is

defined on the filtered probability space (Ω,F , P ). The definitions listed below, given by ?,

try to formally capture the idea that the stochastic properties (e.g. distribution, moments

etc.) of a time series are not influenced by the moment one observes it.

Definition 3.4.1 (strong stationarity). The time series (Xt)t∈N is strictly stationary if

(Xt, Xt+1, ..., Xt+k−1, Xt+k)
d
= (Xs, Xs+1, ..., Xs+k−1, Xs+k)

for all t, s and k ∈ N.

Definition 3.4.2 (weak stationarity or covariance stationarity). The time series (Xt)t∈N

is weak stationary if the first two moments exist and satisfy

µ(t) = µ, t ∈ N,

γ(t, s) = γ(t+ k, s+ k); t, s, k ∈ N,

where
µ(t) = E[Xt], t ∈ N,

Cov(Xt, Xs) = γ(t, s) = E[(Xt − µ(t))(Xs − µ(s))], t, s ∈ N.

It is clear that the auto-covariance function is symmetric γ(s, t) = γ(t, s) for all s, t ∈ N
and that γ(t, t) = Var[Xt]. Moreover, the notation for covariance - stationary time series

simplifies: γ(h) = γ(h, 0)∀h ∈ N and γ(0) = Var(Xt)∀t. A strictly stationary time series

with Var[Xt] <∞ is also covariance stationary. Note that some (G)ARCH stochastic pro-

cesses have infinite variance while they are strictly stationary still, but are not covariance

stationary. To put the previous two definitions differently, a strictly/weakly stationary

time series must not have any systematic changes in mean, variance or covariances be-

tween equally spaced observations.

Definition 3.4.3 (autocorrelation function). The autocorrelation function of (Xt)t∈N for

lag h is

ρ(h) = ρ(Xh, X0) = γ(h)/γ(0), ∀h ∈ N.

Definition 3.4.4 (white noise). (Xt)t∈N is considered to be a white noise process if it is

both covariance stationary and the correlation function satisfies

ρ(h) =

{
1, h = 0,

0, h ̸= 0.

A good example of a white noise process is the strict white noise process.

Definition 3.4.5 (strict white noise). (Xt)t∈N is a strict white noise process if it is a

sequence of independent identically distributed random variables with finite variances.
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In order to introduce martingale difference, we discuss the sigma algebra Ft = σ({Xs :

s ≤ t}) which contains all information of the stochastic process (Xt)t∈N up until time t.

To put it differently, it models the accrual of information over time. This implies that

the indexed sequence of sigma algebras (Ft)t∈N is the natural filtration since σ({Xs : s ≤
t}) ⊆ σ({Xs : s ≤ t+ 1}).

Definition 3.4.6 (martingale difference). The time series (Xt)t∈N is a martingale dif-

ference series if it is adapted to filtration (Ft)t∈N, integrable E[|Xt|] < ∞ and centered

E[Xt|Ft−1] = 0, ∀t ∈ N.

By applying the tower rule (the law of total expectation), we notice that the un-

conditional expectation with respect to the stochastic process (Xt)t∈N is zero as well:

E[Xt] = E[E[Xt|Ft−1]] = 0, ∀t ∈ N. A fortiori, if the process has a finite second raw

moment, i.e. E[X2
t ] <∞, the covariance is also equal to zero

γ(t, s) = E[XtXs] =

{
E[E[XtXs|Fs−1]] = E[XtE[Xs|Fs−1]] = 0, t < s,

E[E[XtXs|Ft−1]] = E[XsE[Xt|Ft−1]] = 0, s < t.

This section can be concluded by a observation that is using all the stated definitions.

Assuming that we have a finite variance martingale-difference process which is therefore

integrable, adapted to filtration, centered and has zero covariance, is a white noise process

if the variance is constant throughout time t.

3.4.2 Autoregressive Conditional Heteroskedasticity

The basic univariate GARCH is introduced first in order to generalise thereafter to a

multivariate version. ? define that (Xt)t∈N is a GARCH(p,q) if it is strictly stationary

and it satisfies the equations

Xt = σtZt, ∀t ∈ Z

σ2t = c+

p∑
i=1

αi(Xt−i)
2 +

q∑
j=1

βjσ
2
t−j , ∀t ∈ Z,

(3.8)

where c > 0, αi ≥ 0, i = 1, ..., p and βj ≥ 0, j = 1, ..., q. It is called a generalised

autoregressive process since it not only depends on the past volatilities but also on the

history of the squared process (Xt).

Lee and Yoder (2007) define a multivariate GARCH(1,1) model for two discrete-time

stochastic processes which we will generalise for our universe of N assets, that is (Xi,t)t∈N

where i = 1, ..., N . In matrix notation, this resembles to (Xt)t∈N. First, we assume that

the correlation coefficients between these asset are constant throughout time. Among

others, Engle (2002) employed also a constant correlation coefficient (CCC) GARCH(1,1)
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model, developed by Bollerslev (1990), for the purpose of hedging a portfolio with expo-

sure to various foreign currencies. This model enables the hedge ratio to be time-varying

and includes the long-term relationship between different spot currency prices. The mul-

tivariate GARCH(1,1) is formally expressed as

Xt = µt + at (3.9)

where αt is the expected return vector at time t and

at ∼ N (0,Σt). (3.10)

Since linear transformations of normal random variables are also normally distributed, it

is possible to express at as

at = Σ
1/2
t zt (3.11)

where zt is a N×1 vector of identically independent distributed standard normal variables,

i.e. E[zt] = 0 and E[ztzTt ] = IN . The Cholesky decomposition of Σt is expressed by Σ
1/2
t .

Σt represents the conditional N × N covariance matrix at time t. For instance, con-

sider two assets (X1,t)t∈N and (X2,t)t∈N where this conditional covariance matrix can be

decomposed as

Σt =

[
σ211,t σ12,t

σ21,t σ222,t

]

=

[
σ11,t 0

0 σ22,t

] [
1 ρ

ρ 1

] [
σ11,t 0

0 σ22,t

]
= DtRDt

(3.12)

As seen before, the GARCH(1,1) model is in fact nothing more than an ARMA(1,1)

process of the squared residuals, that is

σ21,t = c1 + α1ϵ
2
1,t−1 + β1σ

2
1,t−1

σ22,t = c2 + α2ϵ
2
2,t−1 + β2σ

2
2,t−1.

(3.13)

In the general setting, the N -dimensional white noise with conditional variance - covari-

ance matrix Σt is modeled by at = (a1,t, ..., aN,t)
T and follows a centered N -dimensional

normal distribution. The pairwise Pearson correlation coefficients ρi,j for i, j = 1, ..., N

are assumed to be constant.

The Dynamic Correlation Coefficient GARCH (DCC GARCH) introduced by ? and

Engle (2002) relaxes the assumption of time independent correlation coefficients among

random variables.

Rt = J−1
t QtJ

−1
t (3.14)
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where

Jt =


√
q11,t 0 . . . 0

0
√
q11,t . . .

...
...

. . .
. . . 0

0 . . . 0
√
qNN,t.

 (3.15)

Remember that Dt represents the diagonal matrix containing the conditional standard

deviations of every asset at time t. By performing a linear transformation on at, we

obtain standardisedN×1 vector of standardised residuals where the conditional covariance

matrix equals the conditional correlation matrix,

ϵt =D
−1
t at ∼ N (0,Rt). (3.16)

Finally, Qt which is positive definite, is defined as an autoregressive moving average

process

Qt = (1− θ1 − θ2)Q̄+ θ1ϵt−1ϵ
T
t−1 + θ2Qt−1. (3.17)

The parameters θ1 and θ2 are scalars which have to satisfy

θ1 ≥ 0, θ2 ≥ 0 and θ1 + θ2 < 1. (3.18)

The unconditional covariance matrix is denoted by Q̄ = E[ϵtϵTt ] and is estimated by

Q̄ =
1

T

T∑
t=1

ϵtϵ
T
t . (3.19)

Notice that J t rescales the elements of Qt such that

∣∣∣∣∣ σ2ij,t
σii,tσjj,t

∣∣∣∣∣ = ρij,t ≤ 1.

3.4.3 Optimisation for CCC and DCC GARCH(1,1)

Both CCC and DCC GARCH models implicitly assume a distribution for the residuals. In

the literature, distributions as the multivariate Gaussian, Student’s t and skew Student’s t

distributions are used. Nevertheless, this research will only consider multivariate Gaussian

distribution.
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3.4.3.1 Multivariate Normal distribution

This research assumes that the vector of independent standardised residuals [z0, ...,zT ]

are multivariate Gaussian distributed, that is the joint distribution

f(zt) =
T∏
t=1

1

(2π)N/2
exp

{
−1

2
zTt zt

}
(3.20)

where E[ϵt] = 0 and E[zTt zt] = IN with t = 1, ..., T representing the observations in the

sample period.

For normal distributed random variables we know that a linear transformation, i.e.

at = Σ
1/2
t zt is again normally distributed and the likelihood function resembles to

L(Θ) =

T∏
t=1

1

(2π)N/2|Σt|
exp

{
−1

2
aTt Σ

−1
t at

}
. (3.21)

The parameter set Θ contains the model parameters for the CCC and DCC GARCH(1,1)

model. In particular, the parameter set contains both the univariate GARCH parameters

(ci, α1,i, βi) for i = 1, ..., N and the correlation parameters (θ1, θ2). The goal is to find the

parameter set that maximises the above likelihood function. By substitutingΣt = DtRtDt

and taking the natural logarithm, we obtain

ln(L(Θ)) = −1

2

T∑
t=1

(
N ln(2π) + ln(|DtRtDt|) + aTt t(DtRtDt)

−1at

)
= −1

2

T∑
t=1

(
N ln(2π) + 2 ln(|Dt|) + ln(|Rt|) + aTt D−1

t R−1
t D−1

t at

)
.

(3.22)

Notice that in the above likelihood function not only the variance coefficients are time

dependent, but also the correlation coefficients. This significantly complicates the opti-

misation problem which is why it is split into two stages. First, the parameter set that

corresponds to the univariate GARCH(1,1) models are estimated by substituting Rt by

IN . The parameters corresponding to the correlation coefficients (θ1, θ2) are then esti-

mated in the second stage. Notice that for the CCC GARCH(1,1) we actually only need

to perform the first stage and then calculate the Pearson correlation matrix for all the

assets N .
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Step one: univariate GARCH(1,1)

As mentioned previously, the Rt is substituted by IN in the log-likelihood function

ln(L1(Θ)) = −1

2

T∑
t=1

(
N ln(2π) + 2 ln(|Dt|) + ln(|IN |) + aTt D−1

t IND−1
t at

)
.

= −1

2

T∑
t=1

(
N ln(2π) +

N∑
n=1

{
ln(σi,t) +

a2i,t
σi,t

})
.

(3.23)

Appendix A.1 elaborates on the univariate maximum likelihood estimation of the GARCH(1,1)

model. Thus, the last equation is merely the sum of every individual log-likelihood func-

tion of a GARCH(1,1) for N assets. This can be seen as a quasi-likelihood estimation for a

multivariate GARCH(1,1) that are not correlated. Once the set of parameters (ci, α1,i, βi)

is determined for i = 1, ..., N , it is possible to calculate Q̄ = E[ϵtϵTt ] and ϵt = D
−1/2
t at.

Step two: correlation coefficients

The set (θ1, θ2) has still to be determined by the following quasi-likelihood function

ln(L2(Θ)) = −1

2

T∑
t=1

(
N ln(2π) + 2 ln(|Dt|) + ln(|Rt|) + aTt D−1

t R−1
t D−1

t at

)
.

= −1

2

T∑
t=1

(
N ln(2π) + 2 ln(|Dt|) + ln(|Rt|) + ϵTt R−1

t ϵt

)
.

= −1

2

T∑
t=1

(
constant + ln(|Rt|) + ϵTt R−1

t ϵt

)
.

(3.24)

First, notice that Dt is constant because it was estimated in the first stage. ? showed that

this pseudo-likelihood method has asymptotically normal estimators. In addition, Jondeau

and Rockinger (2005) proved that this two stage approach is similar to an one-step full

maximum likelihood estimation.

3.4.3.2 Potential pitfalls

Since this is a multivariate optimisation problem, the initial starting values are extremely

important in order to avoid local optima. It is therefore of uttermost importance to use a

grid of initial values to be sure that the final set of parameter values is a global optimum. A

second potential pitfall is the existence of outliers in the sample set. Gradient optimisation

algorithms might run into trouble when these observations are not removed, i.e. it hits a

boundary. The Sequential Least Squares numerical optimisation algorithm was used in ac-

cordance with the SciPy package in python: scipy.optimize.minimize(method=’SLSQP’).
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3.5 Hansen’s model confidence set

The goal is to determine the set of optimal model(s) V ∗ which outperforms the whole set of

considered models, i.e. V 0. Hansen’s Model Confidence Set (MSC) (Hansen et al. (2011))

calculates these p-values by choosing the best-in-class models that aren’t significantly

different from each other based on a predetermined metric.

The Hansen’s MSC is a series of significance tests where the null hypothesis is

H0,V : E[dij,t] = 0, ∀i, j ∈ V 0. (3.25)

The loss function dij,t = Li,tLj,t is calculated for two models i and j in the complete set of

models i, j ∈ V 0 at a specific observation date t in the backtest. The alternative models

are then ranked according to the expected loss. For instance, model i is to be preferred if

E[dij,t] < 0. The total set of optimal models is then obtained by

V ∗ = {i ∈ V 0 |E[dij,t] ≤ 0, ∀j ∈ V 0}. (3.26)

Finally, the metric to compare these models over for this research are: returns, volatility,

Sharpe Calmar and pain ratio, maximum and average drawdown. For each of these cri-

teria, the value is calculated for each of the portfolios at each month over the duration

of the backtest, resulting in a list of values that can then be compared over time using

Hansen’s statistical test. The return statistic is calculated as the simple monthly percent-

age change in portfolio value. The maximum drawdown is calculated as the maximum

of the percentage drawdown from the high watermark at that time. Equally, the average

drawdown is calculated as the mean over time of the percentage drawdown from the high

watermark.The Calmar ratio is calculated as the monthly return divided by the monthly

maximum drawdown. The pain ratio is calculated as the monthly return divided by the

monthly average drawdown.
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Chapter 4

Numerical experiment

4.1 Case study: MSCI ACWI

This research investigates different FX hedging methods on the Morgan Stanley Capital

International (MSCI) All Country World Index (ACWI), that is MSCI’s flagship global

equity index. Its investment universe ranges from large - to mid-cap stocks across 23

developed and 24 emerging markets. For instance, on May 2022, its exposure was almost

as large as 3000 constituents that covered almost 85 % of the free float-adjusted market

capitalisations in more than ten sectors1. Figure (4.1) and (4.1) show both the time series

of MSCI ACWI and the different sectors it is composed of.

1A full description of MSCI ACWI is available at: https://www.msci.com/our-solutions/indexes/acwi

Figure 4.1: MSCI ACWI time series until August 2022.
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Figure 4.2: Sector weights for the MSCI ACWI index on August 2022.

4.2 From raw data to results

In order to perform a successful backtest, a long time series is predominant in order

to thoroughly evaluate the chosen optimisation methodologies out of sample. First line

of business is the extraction of currency exposure data for different time stamps. This

is accomplished by first using free float-adjusted market capitalisations for every single

instrument and subsequently by grouping per home currency. MSCI publishes ISIN data

for its ACWI index back until January 2004 which therefore determines the start of this

research’s backtesting period. As one can expect, these currency exposures vary over time

because market capitalisations will. This is displayed in figure (4.2).

From a cost perspective, it is not interesting to hedge every FX exposure. Currency

exposures that could be considered immaterial are most likely correlated with other cur-

rencies where the market might just be not as liquid. This wide bid-ask spread will

most surely offset all the potential diversification benefits. The universe of currencies

is therefore restricted to : [USD, EUR, JPY, GBP, HKD, CAD, CHF, AUD, TWD, INR,

CNY, SAR, BRL, KRW, ZAR, RUB, SEK, NOK]. A table of the entire list can be found

in appendix (C.1).

The optimisation problem has to be clearly defined still. In particular, the bounds set

to each single currency in the universe as well as the maximum exposure that we could hold

during the invested period are crucial. In case the bounds are too strict, we risk of having

either an infeasible solution or to not have an optimisation problem at all. Consider the

case where an Euro denominated investor would like to hedge his FX exposure inhibited

in the invested basket. Say that he is not particularly risk averse and would like to keep

15% EUR at all time. As figure (4.2) already showed, Euro’s contribution to MSCI ACWI

is ranging from 10% to 20% throughout time which implies that the problem becomes

24



infeasible when wt,EUR > 15% for t = 1, ..., T . One might wonder, if we just sell some

Euros for foreign currencies the issue should be remediated and the initial optmisation

problem becomes feasible again. This might be the case for equities or other financial

instruments, but it is hard to explain to investors that our optimiser would actually buy

more foreign currencies in order to reach our hedging goal which is in essence to reduce

risk FX risk. Therefore strict upper bounds are imposed on each individual currency

that it is only possible to assign a weight as large as 100% of MSCI’s magnitude in that

particular currency. The weights also have to sum to one, i.e. wT1 = 1. Lastly, it is not

possible to sell more than the current exposure: wi ≥ 0 for i = 1, ..., N . Coming back

to the illustrative problem where infeasibility might occur, it is possible to just hold 20%

EUR at all times. This would cause that at some particular time stamps we don’t have

an optimisation problem at all: wt,EUR ≈ 20% but always less than 20%. This potential

pitfall is avoided by altering the definition of hedging. Instead of keeping a fixed weight

in Euro throughout time, a fixed fraction of the total foreign currency exposure is sold

at predetermined time stamps. For instance, if the total FX weight amounts to 80% at

one point in time, half of this exposure is sold. The total share of Euros held by this

investor amounts to 60%. This is exactly the 50% static hedging benchmark this research

considers.

After handling the raw ISIN data, determining a fixed universe of currencies and

defining the optimisation problem, it is possible to construct the backstest for different

optimisation methods and benchmark it against the 50% static hedged basket. The back-

testing period is ranging from January 2004 until January 2022 which includes particularly

interesting events:

1. The financial crises of 2008.

2. The sovereign debt crisis.

3. The unpegging of the Swiss Franc to the Euro.

4. The unpegging of the Chinese Yuan to the USD.

5. The covid crisis.

Next to the range of the backtesting period, it is important to have an appropriate

calibration period. On the one hand, it cannot be too short since there is a significant risk

of overfitting the data or the possibility that some covariance methods might become not

full rank anymore. By using an extremely long calibration period, on the other hand, we

might not be able to capture changing trends, due to the arrival of new information, in

the data set. Therefore this research is using three years of data as training set and one

month as test set. After one month, the calibration is run again and rebalancing takes
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Figure 4.3: It is clear that currencies exposures vary significantly throughout time. For
instance, the Chinese Yuan and the Saudi Arabian Riyals were only relevant from 2018
and 2019 respectively. The British Pound Sterling and EURO, on the other, diminished
throughout the years. The United States Dollar exposure in the MSCI ACWI varies from
40% to 50% and is by far the largest risk driver in the basket.

place both in the benchmark as in the optimal portfolio. Note that during the backtesting

loop, the exposures of every currency at the start of the one month test set, are given as

upper bounds to the MOSEK2 package. By dynamically keeping track of these exposures,

it is possible to realistically compare the performance of the optimal portfolio with the

benchmark. In reality, hedging activities in retail portfolios will only happen after a fixed

interval of time, e.g. one month, and not daily.

4.3 Descriptive statistics

This section summarises the descriptive statistics of the daily return time series denom-

inated in Euro since this is our base case (see next section). These findings can be gen-

eralised to the other cases as well (i.e. USD, GBP). Table (4.1) summarises the mean,

standard deviation, skewness, kurtosis, the Augemented Dicky Fuller (ADF) test and fi-

2A full description of the MOSEK package is available at: https://www.mosek.com/documentation/
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nally the Jarque-Bera Lagrange multiplier statistic for the daily returns of all currencies

in the considered universe.

Standard in time series analysis is to start with an examination of unit roots. The ADF

is employed to test for all currency returns in each market that under the null hypothesis

of a unit root against the alternative hypothesis of not containing an unit root. This

test rejects the null-hypotheses at 1% significance level, meaning that all return series

could potentially be stationary since they do not contain an unit root. Furthermore, we

can conclude that the mean return for all currency pairs with EUR are statistically not

different from 0 because no trend is observed anymore. In section (2.2.2) it was already

assumed that there is no premium for returns in the FX market. The corresponding

variance of returns, on the contrary, is much higher. Figure (4.4) presents four graphs of

daily returns for EURUSD, EURGBP, EURCHF and EURKRW. These indicate volatility

clustering, or periods of high volatility followed by periods of relative tranquility. In

particular, all graphs inhibit high volatility periods in 2008, 2011, 2016 and 2020. This

also shows that these time series are at least highly correlated in stressed periods. This

research tries to account for changing volatility regimes by estimating a currency pair’s

standard deviation via an ARMA(1,1)-like process (autoregressive moving average model

for the error’s variance), see section (3.4).

These currencies’ spot returns series have also a high kurtosis, which indicates the

presence of fat tails. Especially the currency pairs: EURCHF, EURAUD, EURGBP,

EURJPY, EURKRW, EURRUB and EURZAR. On the other hand, EURUSD seems to

be thin-tailed and by incorporating the skewness, also symmetrical. This is an exception to

most currency pairs since they all are either large negative or positive skewness statistics.

This indicates a longer left tail (extreme losses) for a negative coefficient and longer right

tail for a positive coefficient (extreme gains). The EURCHF has for instance an extreme

positive outlier. This was the result of a change in the Swiss’ central bank policy by

abolishing the peg to the Euro. In appendix (B.1) the correlation and co-drawdown matrix

as well as the Principal Component Analysis are displayed. Notice that the first four

eigenvectors of the correlation matrix already explains 71% of the variance, that is of the

16 currency pairs. As we know that the percentage explained variance of each eigenvector

can be calculated by
λi∑N
i λi

, the first four eigenvectors explain: [45%, 15%, 6%, 5.7%]. In

other words, it seems that these currency pairs are linearly dependent.
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Mean SD Skewness Kurtosis ADF Test Jarque–Bera

AUD 0.000026 0.006683 -0.421104 12.931220 -17.544961 32648.37
BRL -0.000054 0.010217 -0.028368 4.446663 -52.341691 3843.40
CAD 0.000050 0.005729 -0.065047 2.389531 -49.601549 1112.43
CHF 0.000100 0.004943 13.625825 628.554538 -15.221178 76971210.17
CNY 0.000095 0.005717 -0.019480 2.357166 -71.356732 1079.57
GBP -0.000035 0.005070 -0.426934 6.261091 -49.337322 7761.89
HKD 0.000038 0.005684 -0.011969 2.357484 -68.765878 1079.68
INR -0.000064 0.006351 -0.034825 2.672162 -30.097996 1388.13
JPY 0.000037 0.007134 0.407986 10.965139 -13.810971 23504.79
KRW 0.000047 0.007612 0.384157 25.389884 -12.690677 125459.33
RUB -0.000149 0.009089 0.219577 33.747277 -10.472293 221485.55
SAR 0.000039 0.005727 -0.024494 2.482098 -68.727603 1197.25
SEK -0.000017 0.004337 -0.176943 4.671136 -13.075981 4265.05
TWD 0.000078 0.005735 -0.019409 2.314423 -42.451837 1040.76
USD 0.000039 0.005710 0.000571 2.325973 -68.508853 1050.89
ZAR -0.000111 0.009645 -0.883822 11.535827 -28.832720 26480.39

Table 4.1:

Figure 4.4: test
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4.4 Evaluation criteria

In order to thoroughly evaluate the overall performance of different optimisation method-

ologies with the iVaR framework, it is necessary to adapt a statistical framework. As

already formally introduced in section (3.5), Hansen’s Model confidence set is an approach

to determine which models under- or outperform relative to others, giving the objective:

average drawdown, volatility, Sharpe ratio, calmar and pain ratio. Since the obtained

results will depend on the overall setting, this research considers:

1. The base case where the static Euro denominated 50% hedged benchmark portfolio is

compared against the iVaR and the minimum variance, computed using the historical

covariance matrix.

2. The home currency might be relevant which is why the analysis of the base case from

above is also performed on USD and GBP denominated portfolios. The former plays

an incremental role in the basket since it almost 50% of the MSCI ACWI stocks are

denominated in USD. On the other hand, GBP’s fraction is much lower than USD

and EUR, especially near the end of the backtest period.

3. As in many quantitative methodologies applied to finance, transaction costs are as-

sumed to be negligible or even not considered at all. In the event they are taken

into account, it in general offsets the whole benefit. This research therefore considers

transaction costs in the rebalancing after the one month test set. After the calibra-

tion, the optimal weights are compared to the previous ones, that is of one month

earlier, and only a trade occurs if it offsets the imposed transaction cost.

4. We already are aware of the significant limitations the historical covariance’s esti-

mation, hence these results are challenged by the constant and dynamic correlation

coefficient approach but also the shrunken covariance estimation (L1 and L2) and

lastly the exponentially weighted moving average covariance matrix.

4.5 Results

The results obtained in this research indicate that the methodology for hedging foreign

currency risk is highly dependent on the problem setting from an optimisation point of

view. In case strict bounds are imposed on the individual weights, the performance of an

iVaR portfolio is comparable to a minimum variance portfolio. Both portfolios perform

better than the static 50% hedged benchmark portfolio in terms of hedging effectiveness

and drawdown reduction, but do not differ significantly from each other. This is not due to

ill-defined methodologies, but rather due to the specifics of the case study, especially in the

base case. This proven by having a de facto unconstrained optimisation problem. When
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using a different base currency, iVaR slightly performs better than the minimum variance

portfolio, but more importantly, still performs better than the static hedge. Transaction

costs seem not to play an important role for the iVaR portfolio in the performance with

respect to the cumulative drawdowns. Losses, however do occur more often, but these are

still materially different from the static hedge. Lastly, different covariance estimators have

been tested in order to challenge the unbiased estimator of the covariance matrix since

the minimum variance optimiser is extensively used throughout this thesis. This research

finds that in this strict setting, the different estimators are not statistically different from

each other according to Hansen’s model confidence set.

4.5.1 Base case: static hedge, iVaR and minimum variance

The obtained backtesting results for the static 50% hedged benchmark, the iVaR and

the historical minimum variance estimate are presented in figure (4.5). A linear scale

was used for the y-axis, which is also the case for the figures that will follow. Also the

portfolio values are standardised such that they all start from 1.00. It is clear that both

the iVaR and the minimum variance optimisation methods are able to make timeseries

more monotone, for example in the stressed period of 2008. This is also the case during

the European sovereign debt crisis in 2010-2011. The iVaR on the other hand, managed

to get out faster of the 2013-2015 valley. As already mentioned in section (4.3), the CHF

experienced a sudden spike on 15 January 2O15 which explains the sharp increase in all

portfolios.

The histogram in figure (4.5) displays the cumulative drawdowns, that is the draw-

downs integrated over time. It shows for how many days a particular drawdown was

experienced by the basket of currencies. Notice that the two dynamic hedging method-

ologies avoid drawdowns that are greater than 6% (these are daily returns) and therefore

are more optimal from a drawdown perspective. The 6% bin indicates that the iVaR

portfolio was a few days less in stress than the minimum variance portfolio. One might

actually argue that this difference is negligible. Table 4.2 confirms that the dynamic hedg-

ing methodologies are comparable, especially in terms of their hedging effectiveness and

drawdown reduction. Hansen’s Model Condifidence set reaffirms that the dynamic hedges

are in terms of variance, Sharpe ratio, average drawdowns, Calmar ratio and pain ratio

not statistically different from each other.

Let’s dig a bit deeper in the analysis of the behaviour of both the minimum variance

optimiser and the iVaR optmiser. iVaR’s optimal weights on 2006-01-31 are:

{INR: 0.0102, SEK: 0.0104, USD: 0.0282, RUB: 0.0006, ZAR: 0.0088, KRW: 0.0156,

BRL: 0.0101, AUD: 0.0212, GBP: 0.0814, JPY: 0.1162, CAD: 0.0335, HKD: 0.0230,
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TWD: 0.0118, CHF: 0.0277, EUR: 0.600}

while the given bounds on each single currency are

{INR: 0.0102, SEK: 0.0104, USD: 0.4212, BRL: 0.0101, ZAR: 0.0088, AUD: 0.0212,

GBP: 0.0814, CHF: 0.0277, HKD: 0.0230, CNY: 0.0, RUB: 0.0006, KRW: 0.0156, SAR:

0.0, JPY: 0.122, CAD: 0.0335, TWD: 0.011}

The currencies INR, SEK, ZAR, AUD, GBP, BRL, KRW, HKD, CHF and almost JPY

are set equal to their upper bounds. The above weights are now compared to the ones

obtianed from the minimum variance portfolio:

{AUD: 0.0212, GBP: 0.0814, CHF: 0.0277, USD: 0.0811, RUB: 0.0006, INR: 0.0015,

BRL: 0.0101, CAD: 0.0335, JPY: 0.1224, HKD: 0.0001, ZAR: 0.0088, SEK: 0.0104,

EUR: 0.6}.

Also for this optimisation problem AUD, GBP, CHF, BRL, CAD, SEK, ZAR and

almost JPY are set exactly equal to their upperbounds. Both optimisation methodologies

are in fact selling USD since it seems to have both a high pair-wise correlation and a high

pair-wise coiVaR with other assets. Another interesting relationship can be deduced from

the above example. The lower the EUR exposure gets, the more both optimisers have

to select less optimal currencies in terms of correlation coefficients and coiVaR and the

more alike both porfolios become. The converse is also true, that is the case where the

EUR exposure rises due to for instance a higher hedge ratio. Consider for example the

bound set on BRL= 0.0101, it is currently only a fraction
0.0101

0.4
of the total basket of

currencies. In case the exposure of Euro rises, the fraction of BRL will become larger.

It seems counter-intuitive, but increasing the hedging ratio will benefit the optimisation

problem in the methodologies’ effectiveness.

The question still remains: Is the optimal iVaR optimiser able to perform the as-

signment what it is designed for? Appendix B.2 presents the time series plot and the

cumulative histogram for the base case when the bounds are relaxed. Notice that this is

equivalent to increasing the hedging ratio with respect to the bounds. It is now possible

to assign a weight up to tenfold of the current exposure. The time series of the iVaR

portfolio is clearly more monotone. The histogram shows that the iVaR portfolio is able

to avoid extensive drawdowns and additionally experiences fewer days of medium draw-

downs compared to the min variance portfolio. This is also shown in the table (C.2) listed

in appendix C.2. Lastly, iVaR portfolio performs better on both the HE and DR index.
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Figure 4.5: Out of sample results for the benchmark, minimum variance and iVaR port-
folio.

Annualised: Base case

Benchmark Hist Var iVAR

Returns 0.0024 0.0016 0.0023
SD 0.0295 0.0249 0.0251
Sharpe Ratio 0.0830 0.0680 0.0939
Avg Drawdown 0.0343 0.0324 0.0328
Max Drawdown 0.09 0.071 0.0724
Calmar ratio 0.0272 0.0237 0.0325
Pain ratio 0.0715 0.0523 0.0717
HE / 0.1561 0.1511
DR / 0.055 0.0430

Table 4.2: Evaluation criteria for EUR portfolios.
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4.5.2 Changing from home currency

The results from previous section are not case specific for only Euro investors, but gener-

alise more broadly to different home currencies. Figure (4.6) demonstrates the time series

for the static benchmark, the iVaR and the historical minimum variance porfolio with

USD and GBP as home currencies. The corresponding drawdown histograms are shown

in figure (4.7). By visual inspection, one can conclude that the iVaR portfolio minimises

the extreme cumulative drawdowns in the case the base currency is GBP, while it is less

clear for USD though. The explanation is in fact more subtle and inherent to the opti-

misation problem. First and foremost, the USD takes already a material fraction of the

basket’s exposure, i.e. [40%, 50]. By selling 50% of the FX exposure, the basket might

already have a position of up to 75% in USD. This implies that there is less freedom for

the optimiser to choose among the universe of currencies.

Since it is only possible to hold 100% exposure, diversification possibilities in terms of

coiVaR, see appendix (A.2), are limited. For instance, iVaR’s optimal weights on 2006-

01-31 are:

{TWD: 0.0118, JPY: 0.0810, CAD: 0.0335, KRW: 0.0156, INR: 0.0102, AUD: 0.0091,

ZAR: 0.0042, HKD: 0.023, RUB: 0.0006, BRL: 0.0101, GBP: 0.0647, USD: 0.735}

while the imposed bounds are:

{SEK: 0.0104, CNY: 0.0, JPY: 0.122, KRW: 0.0156, ZAR: 0.008, SAR: 0.0, RUB:

0.0006, HKD: 0.023, CHF: 0.027, TWD: 0.0118, ’CAD: 0.0335, INR: 0.0102, EUR:

0.1512, AUD: 0.0212, BRL: 0.0101, GBP: 0.0814}

It is clear that the iVaR optimiser immediately assigns a weight of 100% to the curren-

cies that have a low coiVaR measure, that is CAD, INR, KRW and BRL. Also notice that

TWD and HKD are pegged to the USD and hence this bakset has even a larger dollar

exposure. This is ideal for an investor whose base currency is USD. In sum, only more or

less 25% can be assigned to a set of low coiVaR currencies which makes this optimisation

extremely limited.

{RUB: 0.0006, HKD: 0.0230, KRW: 0.0156, JPY: 0.0777, BRL: 0.0101, CAD: 0.0335,

TWD: 0.0118, INR: 0.01023, GBP: 0.0814, USD: 0.7357}
Both the iVaR and minimum variance assign maximum weights to the pegged dollar

currencies. In addition, they also select the maximum of BRL, CAD, INR and KRW while

the difference in JPY is small. This once again explains why both dynamic portfolio’s are

so alike.
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Figure 4.6: Time series for the benchmark, minimum variance and iVaR portfolio denom-
inated in USD and GBP.

Figure 4.7: Out of sample realised drawdowns for the benchmark, minimum variance and
iVaR portfolio denominated in USD and GBP.

Now lets take a closer look at the GBP optimisation problem which has only an a

varying exposure of [5%, 10%] in the MSCI ACWI. This problem has to be free in nature

compared to the USD case, which should therefore favor diversification opportunities. This

phenomenon is indeed observed in the drawdown plot (figure 4.7).

Appendix (B.3) and ?? list also the plots and tables for the unconstrained optimisation

problem. The USD denominated iVaR portfolio now has fewer extreme drawdowns and

scores well on the HE and DR indices. This section concludes that the portfolio’s home

currency does not influence the previous findings. The iVaR is in general only marginally

better in terms of thee time length that extreme drawdowns occur with strict bounds.

If these bounds are to be relaxed, iVaR portfolios clearly score better on the cumulative

drawdowns plots. It is also evidenced by the drawdown reduction index.
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Annualised: USD

Benchmark Hist Var iVaR

Returns -0.0008 -0.0008 -0.0006
SD 0.0154 0.01159 0.0117
Sharpe Ratio -0.0508 -0.0691 -0.0520
Avg DD 0.0370 0.0337 0.03411
Max DD 0.0806 0.0721 0.0738
Calmar ratio -0.0097 -0.0111 -0.0082
Pain ratio -0.0211 -0.0237 -0.0179
HE / 0.2494 0.2386
DR / 0.0891 0.0789

Table 4.3: Evaluation criteria for USD portfolios.

Annualised: GBP

Benchmark Hist Var iVaR

Returns 0.0083 0.0074 0.0075
SD 0.03493341 0.0317 0.03193651
Sharpe Ratio 0.23976125 0.2353 0.235698803
Avg DD 0.03393752 0.0276 0.028009615
Max DD 0.07604856 0.082732436 0.067112372
Calmar ratio 0.11013592 0.090297911 0.112161096
Pain ratio 0.24679699 0.269988235 0.268743331
HE / 0.091518862 0.085788985
DR / 0.184679183 0.174671216

Table 4.4: Evaluation criteria for GBP portfolios.
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4.5.3 The devil is in transaction costs, or not?

This research considers transaction costs in order to put the obtained results in a more

realistic setting. The time series and drawdown histogram are displayed in figure (4.8)

and the statistics are summarised in table (4.5). We notice that the performance of the

dynamic hedges deteriorates from the moment transaction costs are taken into account.

Nevertheless, the iVaR portfolio is still able to reduce the average drawdown compared to

the static hedge, which isn’t the case for the minimum variance portfolio. The latter has

even a negative value for the DR index while the HE index is similar to iVaR’s score. In

terms of drawdowns and the realised volatility, the iVaR portfolio is more robust while

the minimum variance portfolio is only stable for the realised volatility.

Figure 4.8: test
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Annualised: tc

Benchmark Hist Var iVaR Hist Var TC iVaR TC

Returns 0.002457 0.00169762 0.00235764 0.00128829 0.00190195
SD 0.02957021 0.02495331 0.02510144 0.0251839 0.02525435
Sharpe Ratio 0.08309039 0.06803179 0.09392465 0.05115537 0.07531162
Avg DD 0.03432238 0.0324086 0.03284459 0.0354002 0.03389938
Max DD 0.09006135 0.07146387 0.07240098 0.07442263 0.07242134
Calmar ratio 0.02728141 0.02375492 0.03256371 0.01731049 0.02626223
Pain ratio 0.07158595 0.05238171 0.0717818 0.03639222 0.05610562
HE / 0.15613361 0.15112412 0.14833543 0.14595314
DR / 0.05575892 0.04305616 -0.0314027 0.01232444

Table 4.5: Evaluation criteria for EUR portfolios where transaction costs are considered.

4.5.4 What about different covariance estimation methods?

Using the acquired knowledge of previous results, we would infer that the effect of using

different covariance estimators will not be material. Table (C.1) endorses our intuition

although one estimator could be favored, i.e. the L1-shrinkage method. It is able to

reduce 15% of the incurred volatility and 6% of the average drawdowns. The DCC and

CCC estimators seem to inhibit a similar behaviour since they obtain the highest return

and Sharpe ratio, however DCC scores better on the DR index. A visual inspection of

the cumulative drawdown plot leads to the conclusion that iVaR, L1-shrinkage and the

traditional unbiased estimator of the covariance matrix ought to be preferred when the

goal is to minimise the cumulative drawdowns, especially for large losses.

In the event the constraint are abolished, iVaR is among the better performers based

on the combination HE and DR, but achieves the best scores on the Calmar and Pain

ratio. The EWMA covariance estimator performs in fact better than expected and is able

score 32% on the HE index. One can clearly see that its time series is the smoothest

among its candidates. The L-1 estimator achieves the best score on the hedging effective

index, which is a clear pattern.

Annualised

Benchmark Hist Var iVaR DCC CCC L1 L2 EWMA

Returns 0.002457 0.00169762 0.00235764 0.0025977 0.0026457 0.00167011 0.00052707 0.00089474
SD 0.02957021 0.02495331 0.02510144 0.02604051 0.02619257 0.02493744 0.02517965 0.02571186
Sharpe Ratio 0.08309039 0.06803179 0.09392465 0.09975609 0.1010095 0.06697194 0.02093238 0.03479886
Avg DD 0.03432238 0.0324086 0.03284459 0.03422567 0.03496565 0.0323849 0.03370924 0.03481611
Max DD 0.09006135 0.07146387 0.07240098 0.07664934 0.07661399 0.07132955 0.07815689 0.07292899
Calmar ratio 0.02728141 0.02375492 0.03256371 0.03389069 0.03453284 0.02341398 0.00674374 0.01226869
Pain ratio 0.07158595 0.05238171 0.0717818 0.07589914 0.07566566 0.05157058 0.01563577 0.02569912
HE / 0.15613361 0.15112412 0.11936693 0.11422432 0.15667037 0.14847905 0.13048098
DR / 0.05575892 0.04305616 0.00281771 -0.0187419 0.05644941 0.01786431 -0.0143849

Table 4.6:
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Figure 4.9: test

38



Chapter 5

Conclusion

This paper examined different forex hedging case studies in order to determine the effec-

tiveness of an iVaR optimiser. First of all, the results in this paper suggest that hedging

FX risk under different methodologies in an restricted setting give rise to similar results

in terms of hedging effectiveness and drawdown reduction. Nevertheless, the dynamic

hedges are effective in beating a static hedge based on these performance criteria. From

the moment one relaxes some strict bounds, the different methodologies increase in their

effectiveness which is a clear sign of the complexity of the problem one encounters in de-

termining the optimal basket of currencies. This relaxation of the problem can be suble

as well. For instance, by increasing the hedge ratio we will naturally converge to an un-

constrained optimisation problem. In the limit, however, our portfolio will not have any

material exposure anymore. Another empirical observation made in this paper, is that

home currencies which start with a low exposure are more free in nature with respect to

the optmisation problem and therefore facilitating hedging effectiveness. These results are

obtained in multiple backtests: using different home currencies, incorporating transaction

costs and using state of the art covariance estimators.

Further research on this topic is however advised. First and foremost, one could

conduct an experiment in considering this framework for the universe of stocks of MSCI

ACWI together with the universe of foreign currencies. Next, iVaR is only using historical

paths which is as such only one realisation of a stochastic process. It is therefore advised

to better learn the inherent stochastic process such that a simulation approaches could be

used.
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Appendix A

Mathematical tools

A.1 Maximum likelihood estimation

The parameters of the univariate GARCH can be estimated by the maximum likelihood

estimation. In particular, when considering a standard normal random variable at time t

zt ∼ N (0, 1), which is discrete in time. Then by the linear transformation of a standard

normal random variables we obtain at = σtzt which is also normally distributed. The

likelihood function for an univariate GARCH(p,q) model with parameters c, α and β is

then
L(c,α,β|am+1, ..., aT ) = f(am+1, ..., aT |c,α,β, a1, ..., am)

=
T∏

t=(m+1)

1√
2πσt

exp

{
−a2t
2σ2t

}
.

(A.1)

First notice that not the entire sample size is used but only observations m + 1, ..., T ,

where m = max(p, q). That is because the first m observations are necessary to produce

an estimate for am+1. The likelihood function in equation (A.1) is in fact a conditional

likelihood function. Also, the variance estimates σ2t have to be calculated recursively

σt = c+

p∑
i=1

αia
2
t−i +

q∑
j=1

βjσ
2
t−j , t = m+ 1, ..., T. (A.2)

Since ln(x) is a strictly monotone increasing function, maximising the log-likelihood
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instead of the likelihood, is equivalent.

ln(L) = ln(L(c,α,β|am+1, ..., aT )

= l(am+1, ..., aT |c,α,β, a1, ..., am)

= −1

2

T∑
t=m+1

(
ln(2π) + ln(σ2t ) +

a2t
σ2t

)

= constant− 1

2

T∑
t=m+1

(
ln(σ2t ) +

a2t
σ2t

)
.

(A.3)

A.2 Co - iVaR matrix

The correlation matrix is an useful tool to summarise the degree of linear dependency

among random variables. It is paramount for the minimum variance optimisation, however,

not quite useful for data that do not inhibit a Gaussian dependency structure. If we for

example want to minimise the cumulative drawdown, which implicitly also concerns tail

behaviour, co-iVaR of two random variables needs to be measured instead. Co-iVaR

is a pairwise association measure between assets which compares the risk of an equally

weighted portfolio of asset X and Y with the risk of holding X and Y individually:

coiVaR(X,Y ) =
iVaR(X + Y )

iVaR(X) + iVaR(Y )
. (A.4)

The above formula is an elegant way of measuring the potential pairwise diversification

benefits of using two assets in a portfolio. Drawdown risk measures are sub-additive and

non-negative, thus

0 ≤ coiVaR(X,Y ) ≤ 1. (A.5)

In other words, adding a financial instrument to a portfolio where all the pairwise

coiVaR’s are low, will not increase the portfolio’s iVaR. In the extreme case where coiVaR(X,Y )

∼ 0, the combination of the time series of asset X and Y will be close to monotonic growth

while the separate time series are not necessarily close to monotonic growth. The equally

weighted drawdowns for the portfolio of these two assets in severity, frequency and inte-

grated over time (time to earn back), is low.

Finally, it is possible to construct a co-iVaR matrix that is comparable to the correla-

tion matrix. It is an elegant way of analysing the pairwise correlation in drawdowns
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C =


1 coiVaR(X1, X2) . . . coiVaR(X1, XN )

coiVaR(X2, X1) 1
. . .

...
...

. . . 1
...

coiVaR(XN , X1) . . . coiVaR(XN , XN−1) 1

 .

(A.6)
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Appendix B

Figures

B.1 Supporting figures for descriptive statistics
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Figure B.1: The correlation matrix and co-iVaR matrix for the full backtest period:
January 2004 - January 2022.
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Figure B.2: The explained variance plot for the correlation matrix of January 2004 -
January 2022.

B.2 Supporting figures for results: section (4.5.1)
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Figure B.3: Unconstrained optimistation problem for base case.
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B.3 Supporting figures for results: section (4.5.2)

50



Figure B.4: Unconstrained optimistation problem for USD denominated portfolio.
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Figure B.5: Unconstrained optimistation problem for USD denominated portfolio.

52



B.4 Supporting figures for results: section (4.5.4)
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Figure B.6: Unconstrained optimistation problem for different covariance estimators.
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Appendix C

Tables

C.1 Table supporting data description
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Symbol Currency name

AED Emirati Dirham
ARS Argentine Peso
AUD Australian Dollar
BRL Brazilian Real
CAD Canadian Dollar
CHF Swiss Franc
CLP Chilean Peso
CNY Chinese Yuan
COP Colombian Peso
CZK Czech Krone
DKK Danish Krone
EGP Egyptian Pound
EUR EURO
GBP British Pound Sterling
HKD Hong Kong Dollar
HUF Hungarian Forint
IDR Indonesian Rupiah
ILS Israeli New Shekel
INR Indian Rupee
JOD Jordanian Dinar
JPY Japanese Yen
KRW Korean Won
KWD Kuwaiti Dinar
MAD Moroccan Dirham
MXN Mexican Peso
MYR Malaysian Ringgit
NOK Norwegian Krone
NZD New Zealand Dollar
PEN Peruvian Sol
PHP Philippine Peso
PKR Pakistani Rupee
PLN Polish Zloty
QAR Qatari Riyal
RUB Russian Ruble
SAR Saudi Riyal
SEK Swedish Krona
SGD Singapore Dollar
THB Thai Baht
TRY Turkish Lira
TWD New Taiwan Dollar
USD United States Dollar
VES Venezuelan Boĺıvar
ZAR South African Rand

Table C.1: The entire list of currencies where at some point during the backtest period
stocks where denominated in for MSCI ACWI.
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C.2 Tables supporting results

Annualised: EUR

Benchmark Hist Var iVAR

Returns 0.002457 0.00304821 0.00462406
SD 0.02957021 0.02235569 0.02195305
Sharpe Ratio 0.08309039 0.13635046 0.21063422
Avg Drawdown 0.03432238 0.028921 0.02847178
Max Drawdown 0.09006135 0.07224495 0.07196252
Calmar ratio 0.0272814 0.04219269 0.06425656
Pain ratio 0.07158595 0.10539778 0.16240868
HE / 0.24397924 0.25759568
DR / 0.15737204 0.17046027

Table C.2:
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Annualised: USD

Benchmark Hist Var iVaR

Returns -0.0007849 -0.0006396 -0.0001107
SD 0.01544462 0.00885366 0.00896374
Sharpe Ratio -0.0508215 -0.0722451 -0.012354
Avg DD 0.03703833 0.02744747 0.02488278
Max DD 0.0806016 0.05660403 0.05595632
Calmar ratio -0.0097383 -0.0113001 -0.001979
Pain ratio -0.0211921 -0.0233039 -0.0044504
HE \ 0.42674774 0.41962052
DR \ 0.25894413 0.32818819

Table C.3:

Annualised: GBP

Benchmark Hist Var iVAR

Returns 0.00837568 0.00858326 0.00901704
SD 0.03493341 0.03176003 0.03288017
Sharpe Ratio 0.23976125 0.27025346 0.27423959
Avg DD 0.03393752 0.0263928 0.02699122
Max DD 0.07604856 0.07490787 0.06721159
Calmar ratio 0.11013592 0.11458422 0.13415906
Pain ratio 0.24679699 0.32521211 0.33407327
HE / 0.09084076 0.05877587
DR / 0.22231206 0.20467921

Table C.4:

Annualised: EUR

Benchmark Hist Var iVaR DCC CCC L1 L2 EWMA

Returns 0.002457 0.00304821 0.00462406 0.00402016 0.00328554 0.00282008 0.00125537 0.0033017
SD 0.02957021 0.02235569 0.02195305 0.02455679 0.0240269 0.0217366 0.02266926 0.02258858
Sharpe Ratio 0.08309039 0.13635046 0.21063422 0.16370889 0.13674412 0.12973859 0.05537754 0.14616691
Avg DD 0.03432238 0.028921 0.02847178 0.02999093 0.03158229 0.02846646 0.02983313 0.02478582
Max DD 0.09006135 0.07224495 0.07196252 0.08171103 0.07955409 0.0703685 0.06644364 0.05333731
Calmar ratio 0.02728141 0.04219269 0.06425656 0.04919977 0.04129942 0.04007582 0.01889373 0.06190233
Pain ratio 0.07158595 0.10539778 0.16240868 0.13404599 0.10403099 0.09906659 0.04207966 0.1332094
HE / 0.24397924 0.25759568 0.16954313 0.18746267 0.26491573 0.23337505 0.2361034
DR / 0.15737204 0.202296 0.15213142 0.0913639 0.18541778 0.15770333 0.31966368

Table C.5:
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