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Abstract

This thesis researches different models for the generation of multivariate asset return data includ-

ing a DCC(1,1)-GARCH(1,1) model, a moving block bootstrap model and a Variational Autoen-

coder. Their performance is evaluated based on univariate path distribution similarity, univariate

stylized facts appearance frequency, and drawdown distribution similarity related to InvestSuite

Value at Risk portfolio optimization. The models show significant difference in performance when

looking at the test results. Furthermore, the Variational Autoencoder is successfully adapted to

improve drawdown distribution similarity between sample and generated data. This result shows

the strength and flexibility of the use of artificial networks for financial data generation.
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1 Introduction

Quantitative research for investment strategies is a rigorous procedure consisting of many intermediate steps.

However, once a strategy is developed, one expects a flawless test that shows its performance. Traditionally,

such a test, also called a backtest, checks the effectiveness of the strategy by charting the performance in

real-world conditions using historical data. Such a test however, gives you only one version of the story.

Relying on only one single version of a story out of an infinite amount of possibilities might lead to adverse

outcomes such as overfitting of a strategy to that test. Overfitting can make a strategy less suitable for future

conditions as these future conditions can diverge from the tested scenario, on which the strategy depends.

To avoid these dangers, there is a need for a richer toolkit that can provide quality time series data for

backtesting. This thesis provides a basis for this toolkit, and is written in collaboration with InvestSuite,

providing practical knowledge and data resources.

The research discusses and compares multiple methods that can be used to simulate realistic multivari-

ate financial return data for portfolio optimization testing purposes. Furthermore, it assesses the quality

of these generated financial time series on different levels. Three different models are discussed, covering

the spectrum from parametric models to non-parametric models. These include Dynamic Conditional Cor-

relation - General Autoregressive Conditional Heteroskedasticity (DCC-GARCH), Variational Autoencoder

(VAE) and block bootstrap. The DCC-GARCH model will advocate for the parametric models, the block

bootstrap for the non-parametric models, and the VAE is somewhere in between being an artificial neural

network.

To assess the output of our generating models, a qualitative analysis of the time series is done by checking

if the stylized facts of historic financial time series appear in the generated data as well. Furthermore, a

quantitative analysis comparing the sample data and the simulations is done using normalized mathematical

signatures of a time series. Signatures is a data mapping used to capture the characteristics of a time series

with a finite dimensional vector. Normalising the moments of the signatures of the time series allows to

find the underlying data generating process or law. These laws can be compared. As multivariate data is

considered, an analysis is done on the correlation of the considered assets in the simulated data as well.

Subsequently, this paper discusses the application of the generated data as backtesting data for InvestSuite

Value at Risk (iVaR). IVaR is based on the frequency, magnitude and duration of drawdowns, and we com-

pare the distribution of drawdowns in sample data and generated data to analyse the performance of the

generating model in the iVaR environment. Furthermore, the Variational Autoencoder method is further

adapted to improve drawdown distribution matching between sample and simulated data.
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The sample data that is used is provided through the financial data servers of InvestSuite, where data

is used from either Morningstar, Datastream Webservices API (DSWS), or TRKD. The sample data con-

tains 7 years of financial return data (2014-01-01 until 2021-01-01) of the current companies under the EURO

STOXX 50 universe, containing 50 blue-chip companies from 8 European countries.

The text starts with a discussion of the literature on financial time series characteristics and financial return

data generating models in the literature section. Next, three models are selected and explained in detail

together with the different tests in the methodology section. After methodology, the data set that is used,

is discussed before moving on to the results section where the results of the different tests are discussed for

each model. The paper finishes with a conclusion on the results, and further research possibilities.

The results show the generative performance of all three models by discussing all scenarios of one simulated

month and by discussing one time series of all simulated one month scenarios combined. The DCC-GARCH

model produces scenarios where the correlation between different assets is overestimated and there is no

significant similarity in drawdown distribution, but where the similarity of underlying process for each as-

set is partly present. When combining the scenarios, four out of six checked stylized facts tend to return

regularly for different assets. The block bootstrap returns a correlation more realistic compared to sample

correlations, improved similarity in univariate underlying distribution, and significant similarity in drawdown

distribution. The combined scenarios show regular appearance of four out of six stylized facts.

While the variational autoencoder returns correlations comparable to sample correlations, and finds similar-

ity in underlying process for almost all assets, the main result is the improvement in similarity of univariate

drawdown distribution between sample and simulation by adaptation of the objective function of the Varia-

tional Autoencoder. The objective function allows to make the autoencoder focus on a desired characteristic

of the data and these results indicate that it is possible to improve set characteristic. The contribution of

this research to current literature is threefold. First, an adapted version of the variational autoencoder is

provided in order to improve similarity in loss distribution. Second, as far as my knowledge goes, there is

currently no comparison made between the considered models when focusing on generating financial return

data. Third, a testing suite is provided for assessment of generated financial data. This suite contains a

scoring system for presence of stylized facts in a universe of financial data, a test comparing the underlying

distribution of return paths, and a test for analyzing the similarity in drawdown distribution of sample paths

and generated paths.
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2 Literature review

High quality return data is not easy to define nor to reproduce. However, understanding financial time

series and its characteristics is very critical, which is why financial time series and their characteristics have

been researched for decades by academia and practitioners. This section describes what insights the current

literature provides for describing, but also reproducing, asset return time series.

Over more than half a century, academics have been researching the statistical properties of prices of fi-

nancial assets. Over time, a set of properties common among the return data of financial instruments from

different markets has been observed by independent studies. These common properties for prices and returns

of stocks, commodities and market indexes are further classified as stylized facts. Cont (2001) presents a

pedagogical overview of the stylized facts. The 11 stylized facts in this paper are set for financial log returns

defined as r(t,∆t) = ln(S(t + ∆t))− ln(S(t)) with S(t) the price of a financial asset at time t, and ∆t the

time scale indicating the time between each price measurement. When ∆t is small, we speak of a fine scale,

whereas if ∆t is large we speak of a coarse-grained scale. The following stylized facts are outlined in their

research.

1. Absence of autocorrelation in financial log returns: The linear autocorrelations of asset returns

are very small or not existing. Only for small intraday time scales, there might be a significant

autocorrelation, but this is out of the scope of this research as we only consider daily asset returns.

2. Distribution of log returns of a financial asset is heavy tailed: The tail index of the distribution

expresses higher kurtosis than the tail index of a normal distribution.

3. Distribution of log returns of a financial asset is skewed: There is an asymmetry in the

downwards, and the upward movements of prices. In general, there are more positive returns, but

larger negative returns. This asymmetry causes a deformation of the distribution of log returns when

compared to a normal distribution with the tip of the distribution more to the right but a longer tail

on the left. By this characteristic, asset are said to be negatively skewed.

4. Distribution of log returns shows Aggregational Gaussianity: If the time scale becomes more

coarse-grained (∆t larger e.g., weeks or months), the distribution of log returns tends to look more like

a normal distribution. This to show that the distribution of the log returns changes under a changing

time scale ∆t.

5. Intermittency in log returns: Irregular alternations of asset returns at any time scale. Irregular

price changes are common in assets. This due to irregular news events or other irregular events that

can influence the price of an asset.
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6. Volatility clustering in log returns: We find a positive autocorrelation in different volatility mea-

sures over several days. A day of high volatility is highly likely to be followed by a day of high volatility

and likewise for low volatility.

7. Conditional heavy tails in log returns: When corrected for heteroskedasticity, the residual returns

distribution still show heavy tails. However, the tails are less fat than for the unconditional log returns

8. Slow decay of autocorrelations in nonlinear function of log returns: Absolute log returns or

squared log returns are examples of a nonlinear function of log returns. The resulting time series of

these functions show slow decay in autocorrelation in function of time lag over which the autocorrelation

is determined. In what follows this stylized fact will be defined as nonlinear autocorrelation.

9. Leverage effect in log returns: Volatility in asset price is often negatively correlated with the

returns of that asset. In times of uncertainty (high volatility), investors are tempted to sell, lowering

the price of assets.

10. Volume/volatility asset correlation: The volume at which an asset is traded is positively correlated

with the volatility in asset prices.

11. Asymmetry in volatility prediction over time scales: Coarse-grained (large ∆t) measures of

volatility predict fine-scale volatility better than the other way around.

Depending on the research topic, researches focus on different stylized facts, but not often on all of them.

The ones that are most often focused on are the distribution related and dynamic (autocorrelation and

correlation related) stylized facts (Francq and Zakoian, 2019).

While stylized facts are a good qualitative way of describing characteristics of a time series of financial

returns, Lyons et al. (2007) describes a different, more mathematical, method of characterizing a time se-

ries with mathematical signatures. The approach interprets a time series or path as a discretisation of an

underlying continuous path. The signature approach transforms this information in a vector of real-valued

features that are known to characterise set path. Main applications of this method are feature mappings of

time series in machine learning models, but they can also be used in order to detect certain characteristics.

For example, (Wilson-Nunn et al., 2018) describes the use of a signatures approach to develop a recognition

methodology for Arabic handwriting, while (Vauhkonen, 2017) describes the applications of the signatures

method in financial time series analysis in his master thesis. The method can be used to analyse and compare

the underlying distribution of different time series.

Regarding replicating financial returns, available literature provides an abundance of ideas for replication

4



strategies. When discussing these models or strategies one needs to consider the entire spectrum from

parametric models to non-parametric models. We identify three major classes: parametric models, non-

parametric models, and artificial neural networks.

Parametric methods assume the underlying stochastic process of the time series has a structural form that

can be described by utilizing a small number of parameters. Under these assumptions the handful of parame-

ters should be able to capture the key features of the distribution of a financial time series. One can simulate

a time series using such model in a Monte Carlo engine which results in plausible return paths following the

underlying structure that was predetermined by the parametric model. Parametric models have multiple

advantages. Firstly, by describing the characteristics of time series by only a handful of parameters, the

models have a highly simplistic and transparent character, providing an idea of the impact of every param-

eter. Secondly, the simplicity of the models requires less computing power when fitting the parameters on

sample data. Thirdly, there is an abundance of available research on parametric models describing financial

time series. The disadvantage of parametric models is however, that they are often a poor approximation of

reality. The small number of parameters is unable to capture the complexities of financial time series and

give more of a broad approximation. That is why simple models have been adapted towards more and more

complex models using many more parameters. This however decreases the transparency of the models and

makes them vulnerable to overfitting and being inflexible to new data. The classic models used in a Monte

Carlo approach regarding financial time series simulation are stochastic market models and autoregressive

models. Classic stochastic market models like the Heston model (Heston, 1993) and stochastic alpha, beta,

rho (SABR) model (Hagan et al., 2002) assume that the volatility of the price of an asset follows a random

path. An autoregressive model on the other hand, is a serially dependent forecasting model which predicts

the future time series values based on a relation between past values of the observed time series and past

values of the volatility. A famous example of an autoregressive model is the autoregressive conditional het-

eroskedasticity (ARCH) model (Engle, 1982) and generalized ARCH (GARCH) model (Bollerslev, 1986),

which contrary to the stochastic market model assumes that the volatility of asset returns depends on the

previous volatilities and previous returns in a structural way. Trying to further improve the model, many dif-

ferent alternatives and advanced versions were published. Bollerslev et al. (1992) gives an extensive overview

of different versions of ARCH and GARCH that were developed shortly after publication of the original.

Francq and Zakoian (2019) is a very recent work on GARCH models, providing theoretical background,

advanced versions, and financial applications.

Opposite to parametric methods, non-parametric methods do not assume any underlying structure in the

time series process. Simulations are made by analysing and reusing historical data. Non-parametric mod-

5



elling can go from extremely simple historical simulation (Sharma, 2012), to more advanced methods like

bootstrapping and its alternatives (Efron, 1979). The advantages of non-parametric modeling are that there

are no parameters that need fitting, and that the most relevant features of time series stay intact as we reuse

the original data. However, with financial data, things are not as simple as the stylized facts mention for

example nonlinear autocorrelation in log returns. This stylized fact indicates that there are dependencies in

time series resulting of applying a nonlinear functions on the log returns. By rearranging the historical data

one might destroy the present dependencies. For this reason, solutions like block bootstrap (James et al.,

2017) and other, more advanced, alternatives were introduced (Berkowitz and Kilian, 2000).

The third category of models are machine learning (ML) methods and more specific artificial neural net-

work (ANN) methods. In recent years, with advanced computing power becoming more readily available,

ML techniques have gotten much attention for market generation purposes. Data driven generative models

are interesting alternatives to the parametric models as they allow for a much more realistic and complex

approximation of the behaviour of asset returns in a more flexible way compared to the advanced parametric

models. Furthermore, the explicit knowledge of the underlying data generating process is no longer required.

Instead, generative models approximate the underlying distribution of sample data implicitly by generating

samples from the data set and comparing the generated samples’ similarity to the original data set with re-

spect to certain similarity metrics. There are three techniques that are common for generating financial time

series: Generative Adversarial Networks (GAN), Variational Autoencoders (VAE) and Restriced Boltzman

Machines (RBM). Lezmi et al. (2020) gives an extensive explanation of both GAN and RBM models and

is an example of how these methods can be used to improve the robustness of trading strategy backtesting.

Wiese et al. (2020) provides another example of GANs for deep generation of financial time series. Bühler

et al. (2020) provides an example of a VAE for data generation, where they focus on data generation for small

data environments. Kondratyev and Schwarz (2020) describes the application of RBM in a financial time

series simulation. Both GANs and VAEs are relatively new techniques (ca. 2014) making the application

of these methods in financial time series generation very interesting and up to date with current research.

The VAE specifically, is very interesting as it allows for operation in scarce data environments and it is

theoretically straightforward.

3 Methodology

This section consists of two major parts. The first part discusses the financial returns simulation methods,

and the second part discusses the time series quality assessment methods. Three generative methods are

considered: DCC-GARCH, block bootstrap, and Variational Autoencoders. Furthermore three types of

analysis are done on the simulated data: a qualitative analysis by checking the stylized facts of the generated
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data, a quantitative analysis by comparing the underlying law of the data process of sample and simulation

paths through normalized signatures, and a second quantitative test comparing the drawdown distribution

of sample and simulation paths.

3.1 Simulation methods

3.1.1 Parametric model: DCC-GARCH

In section 2, two major types of parametric models made their appearance. On the one hand we mentioned

stochastic market models, and on the other hand autoregressive models. Where the stochastic market mod-

els consider the volatility of the market as a random stochastic process, the autoregressors assume that a

relation between previous returns and previous volatility predicts the present volatility of a financial time

series. This is, the volatility at time t is a function of the previous returns and the previous volatilities, with

this function depending on the type of autoregressor. The idea of modeling the volatility process with a

handful of parameters to determine the financial returns is most in line with our definition of a parametric

model, which is why this type of parametric model was chosen.

As mentioned before, many different versions of autoregressive models exists. The focus in this work is

on GARCH models. GARCH models are very interesting as they consider heteroskedasticity in the data,

so there is no assumption that the volatility is constant throughout the process. This model characteristic

matches the stylized fact of volatility clustering. Furthermore, by only modeling the volatility, the returns

are calculated using random vectors at each time step, which matches the stylized fact that there would

be no linear autoregression in log returns. This is, these random vectors are considered i.i.d, making them

independent of each other. A nonlinear function of returns is used however in the modeling of the volatility,

which causes nonlinear autocorrelation in log returns, which is again a stylized fact. The indication of the

presence of these stylized facts, makes the GARCH model an interesting model for this research. While

dynamic facts like absence of linear autocorrelation, presence of nonlinear autocorrelation, and volatility

clustering might be stylized facts that can be found in simulated data, GARCH models do make assump-

tions about the process determining the distribution of the data.

With portfolio optimization backtesting in mind as application of the simulated data, it is important to

not only correctly simulate the return path for each asset separately, but also to consider the correlations

between the different assets. Multivariate GARCH (MGARCH) models are models that consider these

correlations. Bauwens et al. (2006) gives an overview of appearing types of MGARCH models. They con-

sider three major types: generalizations of the univariate GARCH model, linear combinations of univariate

GARCH models, and nonlinear combinations of univariate GARCH models. The latter option has several
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attractive advantages: It allows for separate specification of the volatility of each asset, and the dependence

between the individual assets. This makes that the model needs less parameters and is easier to estimate,

while, in the mean time, adding more dynamics to the correlations than the linear combinations of univari-

ate GARCH models. The most straightforward method of the nonlinear combinations class is the constant

conditional correlation (CCC)-GARCH model. In this model, the correlation between time series is deter-

mined once. This correlation is based on the residuals of the univariate analysis of each time series. From

that point, the correlation matrix is assumed constant. This however, does not match with reality, where

correlation between different assets changes over time (Bauwens et al., 2006). To cope with this problem,

Engle (2002) published the DCC-GARCH model, which is a generalization of the CCC-GARCH model and

allows for dynamic correlations over time. Considering that the DCC-GARCH model is relatively easy to

estimate and provides dynamic correlations, while being less complex compared to other MGARCH models,

the DCC-GARCH is chosen to advocate for the parametric models.

In what follows, we explain the different components of the DCC-GARCH model, the estimation of the

parameters, and the simulation of asset return paths in a Monte Carlo engine. For the explanation of the

different components, we will start from the expression for the entire model and work our way down to cover

every element. We use the mathematical setup from Orskaug (2009) in our explanation.

We define the DCC-GARCH model with Equations (1:3).

rt = µt + at (1)

at = H
1/2
t zt (2)

Ht = DtRtDt (3)

With rt the n x 1 vector of log returns of n assets at time t, µt the n x 1 vector of expected values of the

conditional rt, and at the n x 1 vector of mean corrected returns of n assets at time t. Ht is the n x n

covariance matrix of at at time t, calculated with Dt, the n x n diagonal matrix of conditional standard

deviations of at at time t, and Rt, the n x n conditional correlation matrix of at at time t. Finally, zt is a

n x 1 vector of i.i.d. errors such that E[zt] = 0 and E[zt zTt ] = I.

Estimation of the conditional covariance matrix Ht is the eventual goal of the DCC-GARCH model. Equa-

tion (3) shows that the covariance matrix can be split in two parts. One being the diagonal matrix of

the standard deviations at time t, the other being the conditional correlation matrix of the returns of the

considered assets at time t. The second part of the name of the model: GARCH, refers to the estimation of

the standard deviation diagonal matrix Dt, while the first part of the name of the model: DCC, refers to

8



the estimation of the conditional correlation matrix Rt.

For the calculation of every element of the standard deviation diagonal matrix Dt, a univariate GARCH

model is used. A univariate GARCH model is defined by Equations (4:6).

rt = µt + at (4)

at = h
1/2
t zt (5)

ht = α0 +
Q∑
q=1

αqa
2
t−q +

P∑
p=1

βpht−p (6)

The equations are very similar to the equations of the DCC-GARCH, but here we only focus on one single

asset. αq for q = 0, ..., Q and βp for p = 0, ..., P are the parameters of the model. If these parameters are

known and if the return data is available, the variance can be determined with Equation (6). P and Q

indicate the order of the GARCH model, and are free of choice but do determine the number of parameters

used. If we consider ∆t to be one day, then the conditional variance at time t is defined as the sum of a

linear combination of the squared daily returns and a linear combination of the previous variances. From this

definition, a first sense of some stylized facts is found. Large volatility on the previous day will return large

volatility the next day as well, and the same goes for small volatilities. This indicates volatility clustering.

Furthermore, in an indirect, nonlinear way the mean-adjusted returns depend on the previous returns as well

through the volatility, indicating possible nonlinear autocorrelation in log returns. Lastly, when calculating

the fourth moment of the log return distribution of the asset returns one can see that this construction

does not introduce fat tails under the assumption that the standardized errors zt are normally distributed

(e.g. for P = Q = 1 in Orskaug (2009) p6.) for the conditional volatilities. Equations (7:9) are important

constraints that have to be followed by the parameters in order for the variances to be positive.

Q∑
q=1

αq +
P∑
p=1

βp < 1 (7)

0 ≤ αq < 1 (8)

0 ≤ βp < 1 (9)

We use this model in order to calculate the volatility at time t for each asset in the data set. The volatilities

at time t are the squared diagonal elements of matrix Dt resulting in Equation (10). The calculation of

the independent volatilities is however not limited to the standard univariate GARCH(P ,Q) and can be

done using any univariate GARCH process that ensures the unconditional variances to exist. In this work
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however, only the standard univariate GARCH is considered.

Dt =



√
h1t 0 · · · 0

0
√
h2t

. . .
...

...
. . .

. . . 0

0 · · · 0
√
hnt

 (10)

The next step is the calculation of conditional correlation matrix Rt. Rt is defined as the conditional

correlation matrix of the standardized residuals εt according to Equation (11).

εt = Dt
−1at ∼N(0,Rt) (11)

with the shape of Rt given by Equation (12).

Rt =



1 ρ12,t ρ13,t · · · ρ1n,t

ρ12,t 1 ρ23,t · · · ρ2n,t

ρ13,t ρ23,t 1
. . .

...
...

...
. . .

. . . ρn−1,n,t

ρ1n,t ρ2n,t · · · ρn−1,n,t 1


(12)

with element ρi,j,t the correlation between asset i and asset j at time t. Just like for univariate GARCH,

there are requirements for Rt. Two requirements have to be considered. The first requirement is the fact

that Ht has to be positive definite as it is a covariance matrix. In order to make sure that Ht is positive

definite, Rt has to be positive definite, as Dt is already positive definite with the diagonal elements the

variance of each asset at time t. The second requirement is that, because Rt is a correlation matrix, by

definition the absolute value of all the elements should be equal or less than one. By decomposing Rt using

Equations (13:14), these requirements can be imposed on Rt.

Rt = Q∗t
−1QtQ

∗
t
−1 (13)

Qt =
(

1−
M∑
m=1

dm −
N∑
η=1

bη

)
Q̄+

M∑
m=1

dm
(
εt−mε

′
t−m

)
+

N∑
η=1

bηQt−η (14)

This decomposition is the DCC part of the model, as we calculate the dynamic conditional correlations at

time t. Just like P and Q indicate the order of the univariate GARCH model, M and N in Equation (14)

indicate the order of the DCC equation. These orders are a measure for how far back in history we look to

calculate current values of hi,t and Qt. Parameters d with dm ∈ R+ with m = 1, ...,M and b with bη ∈ R+

with η = 1, ..., N , are the parameters of the DCC equation. The choice of order determines the number of

parameters used in the model. In order for Ht to be positive definite d and b must satisfy Equation (15).

This fulfills the first requirement for Rt.
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M∑
m=1

dm +
N∑
η=1

bη < 1 (15)

Further in Equation (14), Q̄ = Cov[εtε′t] = E[εtε′t] is the unconditional covariance matrix of standardized

residuals εt and can be estimated with Equation (16). Q∗t is a diagonal matrix with the square root of

the diagonal elements of Qt. Q∗t is needed in Equation (14) to rescale the elements in Qt such that the

correlations are less or equal than one, which fulfills the second requirement for Rt.

Q = 1
T

T∑
t=1

εtε
T
t (16)

With every element of the DCC-GARCH model defined, the parameters d, b, α0, αi, βi with i = 1, ..., n

with n the number of assets considered, have to be estimated. One of the main advantages of this type of

MGARCH models is that the estimation of the volatility of each time series, and the estimation of the time

series dependencies can be executed separately. This divides the estimation of the DCC-GARCH model in

two steps. The first step is the estimation of α0, αi, βi for each asset i separately with univariate GARCH.

The second step is the estimation of d, b with the DCC theory. The estimation steps strongly depend on

the distribution for the standardized errors zt in Equation (2). Multiple distributions are possible for these

standardized errors: multivariate Gaussian, multivariate Student’s t-distribution, and multivariate skew

Student’s t-distribution are some examples. In this paper, we work with multivariate Gaussian distributed

errors. With the joint distribution of z1, ..., , zt, ..., zT given by Equation (17), with t = 1, ..., T the time

period over which the parameters are estimated.

f (zt) =
T∏
t=1

1
(2π)n/2 exp

{
−1

2z
T
t zt

}
(17)

From the joint distribution of the standardized errors, the likelihood function for at = H
1/2
t zt can be

determined using the rule for linear transformation of variables and is given by Equation (18). The likelihood

function parameter θ contains all the parameters required in the model. Taking the log of the likelihood

function and substituting Ht = DtRtDt results in the log-likelihood function that allows for the estimation

of the model parameters, given by Equation (19).

L(θ) =
T∏
t=1

1
(2π)n/2 |Ht|1/2 exp

{
−1

2a
T
t H

−1
t at

}
(18)
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ln(L(θ)) = −1
2

T∑
t=1

(
n ln(2π) + ln (|Ht|) + aTt H−1

t at
)

= −1
2

T∑
t=1

(
n ln(2π) + ln (|DtRtDt|) + aTt D−1

t R−1
t D

−1
t at

)
− 1

2

T∑
t=1

(
n ln(2π) + 2 ln (|Dt|) + ln (|Rt|) + aTt D−1

t R−1
t D

−1
t at

)
(19)

For the estimation of the independent conditional variance of each asset, we impose independence on Equation

(19) by setting the diagonal elements of Rt to 1, and all non-diagonal elements to zero. By doing this, only

the univariate GARCH parameters for each asset are left in the equation and can be estimated. The entire

set of parameters is denoted by φ and we rewrite (19) resulting in the quasi-log-likelihood function L1 given

by Equation (20). The equation shows that the total log likelihood of all assets can be written as the sum

of the log likelihood of each separate asset. This allows us to estimate the univariate GARCH parameters

αi and βi for each asset i denoted as φ with a maximum log likelihood estimation scheme. The code for

this maximum likelihood can be found in class DCC GARCH Appendix A.1, Function garch fit().

ln (L1(φ)) = −1
2

T∑
t=1

(
n ln(2π) + 2 ln (|Dt|) + ln (|In|) + aTt D−1

t InD
−1
t at

)
= −1

2

T∑
t=1

(
n ln(2π) + 2 ln (|Dt|) + aTt D−1

t InD
−1
t at

)
= −1

2

T∑
t=1

(
n ln(2π) +

n∑
i=1

[
ln (hit) + a2

it

hit

])

=
n∑
i=1

(
−1

2

T∑
t=1

[
ln (hit) + a2

it

hit

]
+ constant

)
(20)

With all parameters in φ estimated, the conditional variance hi,t can be calculated for each asset i = 1, ..., n

for each time point t = 1, ..., T . This allows us to estimate εt = D
1/2
t at and Q̄ = E[εtε′t]. With εt, Dt,

and Q̄ we have all the elements for the second estimation step, estimating the set of parameters d and

b, denoted by ψ. We rewrite Equation (19) taking the parameters from estimation step 1 as given, which

results in a second log-likelihood function L2 given by Equation (21). This equation can be further simplified

by assuming that Dt is constant when conditioning on the parameters from step one, which allows us to

take out the constant terms in the log-likelihood function, which results in Equation (22).

ln (L2(ψ)) = −1
2

T∑
t=1

(
n ln(2π) + 2 ln (|Dt|) + ln (|Rt|) + aTt D−1

t R−1
t D

−1
t at

)
= −1

2

T∑
t=1

(
n ln(2π) + 2 ln (|Dt|) + ln (|Rt|) + εTt R−1

t εt
) (21)
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ln (L2(ψ)) = −1
2

T∑
t=1

(
ln (|Rt|) + εTt R−1

t εt
)

(22)

Equation (22) can also be estimated using a maximum likelihood scheme. The code for the estimation of

the parameters of the DCC equation is given in Appendix A.1, Function dcc fit().

With all the parameters of the DCC-GARCH model estimated, the model can be used in order to sim-

ulate different scenarios for the considered assets. The pseudo algorithm is given by Algorithm 1. It is

important to note that instead of predicting the covariance matrix up to k steps in the future and generating

paths of random standardized vectors to multiply with the covariance matrix, we use a recursive strategy.

Each calculated return has an effect on the covariance matrix of the next day.

With the mean-corrected returns at, there is one final step left for finding log returns rt, which is the

calculation of mean log return µt. Among prominent options for calculation of the mean are calculating the

mean log return as the mean of the log returns in the sample data or working with an approximated moving

average that is updated every time step (Orskaug, 2009). We use the latter. At every time step t, we update

the mean value using Equation (23).

µt+k = µt+k−1 ∗ (T + k − 1) + (at+k + µt+k−1)
T + k

(23)

Algorithm 1 finalises the section on DCC-GARCH path generation. With the proposed structure, it is ex-

pected that for the generated paths, we will find volatility clustering, slowly decreasing autocorrelation in a

nonlinear function of log returns, and an absence of autocorrelation in log returns. Furthermore, we predict

absence of the leverage effect, skewness, and perhaps fat tails in log returns as we did not account for these

appearances in the proposed structure of the model. In the calculations we will consider a DCC-GARCH

with M = N = P = Q = 1. In multiple works this was indicated as sufficient (Orskaug, 2009). Further-

more, finding starting values for the estimation of the parameters for higher order DCC-GARCH, and the

estimation of these parameters itself is already a complete research topic by itself, which is why it is not

further considered. The provided code however, is build to support higher order DCC-GARCH.
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Algorithm 1: DCC-GARCH scenario generation
Result: DCC-GARCH mean-corrected returns

for s in range(0, number of scenarios) do

for k in range(1, number of days) do
(a) Calculate independent conditional variances hit+k for each asset i with

hi,t+k = α0 +
Q∑
q=1

αqa
2
i,t+k−q +

P∑
p=1

βphi,t+k−p (24)

(b) Calculate the conditional correlation matrix Rt+k with

Rt+k = Q∗t+k
−1Qt+kQ∗t+k

−1 (25)

(c) Calculate the conditional covariance matrix Ht+k with

Ht+k = Dt+kRt+kDt+k (26)

(d) Generate a random vector zt+k. Vectors zi are standardized and follow a multivariate

Gaussian distribution

zt+k = random.default rng().normal(0, 1, size = (n, 1)) (27)

(e) Calculate mean-corrected returns at time k for scenario s at+k with:

at+k = Ht+k
1/2zt+k (28)

(f) Update the data set of mean corrected returns, update the data set of variance of mean

corrected returns, update data set of standardized residuals, update data set of matrices Qi

end

end

3.1.2 Non-parametric model: Block Bootstrap

The bootstrap will advocate for the non-parametric models. The bootstrap is a widely applicable and

extremely powerful statistical tool that allows obtaining new sample sets from the original data without

assuming any underlying process for the data or having to train the algorithm (James et al., 2017). The

main idea of the bootstrap is to resample the sample data by replacement of the data points. By replacing

data points of the sample with different data points, a new time series is generated. A lot of different types

of bootstrapping exist, but not all are suitable for financial time series data. For example, standard boot-
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strapping assumes that every data point is i.i.d. and creates a new time series by randomly mixing the data

points. If standard bootstrapping would be applied directly to dependent observations, the resampled data

would not preserve the properties of the original data set. Such a bootstrapping method is not usable for

financial time series, as there are dependencies in the time series. Advanced alternatives of bootstrapping

exist ((Hongyi Li and Maddala, 1996), (Berkowitz and Kilian, 2000)), but as the methods become more

advanced, more hyperparameters are added. These extra parameters, often chosen arbitrarily or through a

grid search, determine how a certain resampling strategy is applied, which can steer the algorithm in a cer-

tain direction. Although these references show that bootstrap algorithms that make use of some parametric

assumption about the sample distribution are preferred for many applications in time series econometrics,

the choice of including a non-parametric model was made with the goal to have a model that does not make

any assumptions about distributions at all. For this reason, we opted for a simple moving block bootstrap,

that only depends on two parameters and does not make any assumptions about the sample distribution or

other characteristics of the time series sample.

Moving block bootstrap divides the data set in overlapping blocks containing a certain amount of data

points and randomly selects a number of these blocks to form a new time series with a desired length. The

algorithm depends on two parameters. The first parameter is the amount of data points in each block. When

considering daily returns, this determines how many consecutive days of data we will keep untouched. The

second parameter is the size of the overlap of the blocks. How many data points of block one, will also be in

block two. Figure 1 provides a illustration of this approach with block size three and overlap two. To then

build a new time series of a certain length, blocks are randomly selected and put behind each other without

overlap until the desired length of the new time series is reached.

Figure 1: A graphical illustration of the creation of blocks for block bootstrap with block size 3 and overlap 2. The

daily return at time t is depicted as Rt with t = 1...T

Algorithm 2 shows the pseudo algorithm of the approach that is used to generate new scenarios in this work

using moving block bootstrap. Important to note is that for the multivariate setting, the Rt return of Figure

1 is a vector Rt that contains the returns of all considered assets at time t. This way we try to conserve
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the relation between the different assets. Furthermore, we use each block only once. This should avoid the

distribution of the new scenario becoming very different from the original sample distribution. This however

also depends on the length of the new time series that has to be generated. The code that is written for the

block bootstrap method is the class MovingBlockBootstrap in Appendix A.2.

Algorithm 2: Block bootstrap scenario generation
Result: Block bootstrap mean-corrected returns

max index = len(data)/(length block - overlap)

number of blocks = number of days / length block

for s in range(0, number of scenarios) do
(a) Randomly select number of blocks blocks from all possible blocks with index 0 to max index,

without using a block twice

(b) Connect the blocks and create a time series of length number of days by cutting of the

surplus of days if needed.
end

We consider a block size of five days with an overlap of one day. The thought behind five days is that this

matches an entire trading week. This means that if we put four blocks behind each other for a path of 20

days, this results in four weeks of stock returns that are dependent intra weekly and considered independent

on a larger time scale. This could induce the stylized fact of preserving nonlinear autocorrelations in log

returns for at least five days, which also goes for the volatility clustering. The block bootstrap also favours

the absence of linear autocorrelation in returns as the different blocks are expected to be independent and

the intra block time series structure should already follow that stylized fact as it is sample data. Another

advantage of taking blocks that are large enough is that the leverage effect might be preserved. Furthermore,

if few blocks are used, the distribution of the simulated path could turn out very differently from the sample

distribution, which may or may not remove heavy tails and skewness. The choice for one day of overlap

comes from the reasoning that a large overlap for short scenarios enhances the probability of a resulting

distribution that does not match the original distribution at all.

3.1.3 Machine Learning model: Variational Autoencoder

As mentioned earlier, three popular machine learning methods are popular in regards to generating finan-

cial return paths: Restricted Boltzman Machines, Variational Autoencoders and Generative Adversarial

Networks. All three of these methods are stochastic artificial neural networks that learn the probability dis-

tribution of a real data sample. All three of these methods do not initially assume a certain structure for the

underlying data generating process, and applications of all three of them can be found in current research on

market generation. With not assuming any structure for the underlying data generating process initially, the
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artificial neural networks completely depend on learning the underlying process through the sample data.

By learning on the sample data, the artificial neural network tries to determine this underlying process,

from which it can then generate new data samples. The important difference between these artificial neural

networks is the objective function. RBMs train on log-likelihood maximization problem, GANs consider a

minimax two-player game, and a VAE optimizes on an evidence lower bound (ELBO). According to Bühler

et al. (2020) GANs are the most popular generative networks and has multiple applications in generation

of financial time series, while the VAE approach is more new for this purpose. Although GANs are more

popular, they require lots of data, and often have difficulties with convergence and stability. The VAE on the

other hand is more elegant and simple, and handles data scarce environments better. Bühler et al. (2020)

describes that considering return data of several years is already a data set of magnitudes smaller than the

standard required amount of data for training of a neural network. Furthermore, the VAE is straightforward

to explain, simple to implement and flexible. The unpopularity of VAEs compared to GANs comes from

drawbacks of use of VAE in image generation settings, where the VAE tends to return somewhat blurry

images. This is caused by attribution of high probability to nearby points other than the exact points in

the training set. This returns images that are very much like the original, but not exact, hence blurry. In

a time-series setting this would however not form a disadvantage for the VAE (Bühler et al., 2020). Being

theoretically straightforward, elegant, easy to implement and strong performing in data scarce environments

is why the VAE advocates for the artificial neural networks in this research. The following section explains

the principles of VAE and the design of VAE applied in our research.

Artificial neural networks are an artificial representation of the human brain: a network of neurons that

transfer information in order to perform a task at hand. In a very simple representation, a neural network

is given an input and this input is transferred through the network and returns an output.The network of

neurons that is considered in our research is not random, but build of different layers and the neurons of

one layer can only be connected to the neurons of the previous layer and the next layer. Figure 2 gives

a representation of a layered neural network. We see an input layer, two hidden layers to do some trans-

formation of the data and an output layer containing the possible outputs. In each node, one calculates a

weighted sum of the values of all the nodes in the previous layer. The group of weights associated with each

node are the parameters that are trained during the training process. On the weighted sum of inputs of a

node an activation function is applied and the output of that activation function is passed to the neurons

in the next layers. This activation function rescales the weighted sum to a number between 0 and 1. Ex-

amples of an activation function are the sigmoid function or a Rectified Linear Unit (ReLU) function. The

values that are eventually returned by the last hidden layer, should be usable to determine the desired output.
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Figure 2: A graphical illustration of an artificial neural network consisting of 4 layers, with the first layer where the

input is entered, 2 hidden layers that do a transformation, and the final layer containing the output (Arnx, 2019)

The network weighting parameters need to be trained in order for the data transformation to make sense.

We hand both the input and output to the neural network. This way the neural network knows what output

is expected. When it calculates an output and it matches the expected output, the neural network saves

the parameters that are used, as this is desired. When the output does not match the expected output, the

weights are altered. The magnitude of change of weights determines the speed of the training and is called

the learning rate. A small change slows down the learning process but improves accuracy, while a large

change speeds up the learning process but might reach a less optimal solution. Furthermore, there exists

a process which is called backpropagation. Backpropagation goes against the stream of the network and

investigates for every connection how the output would look if the weight of that connection was changed.

Backpropagation is used in order to find the optimal weights for the neural network.

The principles of an artificial neural network are at the core of an autoencoder. An autoencoder uses

two neural networks. The first neural network, the encoder, takes the data in its original shape as input and

compresses the data to a lower dimension. The second neural network, the decoder, takes the compressed

data from the encoder as input and returns the data in its original shape as output. The training goal is to

reduce the error between the input of the encoder and the output of the decoder. The encoder changes the

representation of the input data x with a function f(x)→ z with z the output of your encoder. The decoder

takes the encoded information z as input and decodes it with a function g(z)→ x̃ back to the original data

shape. The objective in training the autoencoder is to make x and x̃ as similar as possible according to a

set metric. This metric represents reconstruction loss of the model. This approach is traditionally used for

dimensionality reduction of data or feature learning (Carlsson and Lindgren, 2020). Examples of applications
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are image segmentation or large data transfers.

A variational autoencoder is an autoencoder that, instead of mapping the input to a lower-dimensional

latent vector z, maps the input into a distribution. The output of the encoder, vector z, is now replaced

by a vector µ, containing the parameters needed to describe the mean of the distribution, and a vector σ,

containing the parameters needed to describe the standard deviation of the distribution. The dimensions

of µ and σ do not depend on the data but are determined by the number of nodes in the latent layer of

the encoder. Complex data requires more parameters to correctly capture the underlying distribution, thus

a higher amount of nodes in the latent layer of the encoder is needed. The decoder input will then be a

sample from this created distribution, which is again a latent vector z. The decoder output is again x̃.

The loss-function to train the variational autoencoder consists of two terms. The first term is again the

reconstruction loss or decoded loss as defined for the autoencoder. The second term of the loss is the called

the Kullback-Leiberd (KL)-divergence, or latent loss. The latent loss prohibits the distribution created by

the encoder of diverging to much from a certain set distribution. The total loss function of the variational

autoencoder is given by Equation (29).

L(θ, φ; x, z) = Eqφ(z|x) [log pθ(x | z)]−DKL (qφ(z | x)‖p(z)) (29)

In this equation x is the input data, z the latent vector, qφ(z|x) the encoding distribution with φ the encoding

parameters, and pθ(x|z) the decoding distribution with θ the generative model parameters. The first term

corresponds to the probability of observing data x on average over all possible samples from latent vectors z

and should be as close to one as possible. The second term corresponds to KL-divergence, which encourages

the shape of the distribution over the latent factors z to be closer to a certain chosen distribution, for example

a standard Gaussian distribution. Maximising for the first term and minimizing for the second term results

in objective Function (29). In order to be able to train the variational autoencoder, one additional step is

needed. Between the encoder and decoder, a sampling operation takes place sampling z out of a distribution

defined by µ and σ. This sampling operation prohibits us to properly use backpropagation to train the

network as sampling of z is random. This can be facilitated however by defining the sample operation for z

as z = µ + σ ∗ ε with ε a random variable with standard normal distribution. The random sampling now

happens in creation of ε, which does not need training as it is already defined. This means µ and σ can now

be properly trained and we can make use of backpropagation. This practise is called the reparametrization

trick. The dimension of vector ε depends on the dimensions of µ and σ and thus on the number of nodes in

the latent layer. Figure 3 gives a schematic representation of the described variational autoencoder. Once

the VAE is trained, new data can be generated by feeding random ε to z = µ + σ ∗ ε and this sampled z

to the decoder. The decoder is trained and takes the sampled z and returns a generated data sample in the

shape of the original input which was used to train.
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Figure 3: A flow chart representation of a variational autoencoder. The encoder maps input x to latent space z

through mapping of mean and variance of sample x with a stochastic layer described by ε, µ, and σ. The decoder

takes latent space z as input and creates a reconstruction of input x

The Variational Autoencoder used for simulation of multivariate return data in our research is based on

the VAE provided by the research in Bühler et al. (2020). The code of their VAE market generator is

available in the Github repository provided for this paper (Perez, 2020). In this work they use a condi-

tional VAE (CVAE). The conditional VAE adapts the generation process to certain market conditions by

calculating and storing relevant market conditions such as the current level of volatility or current price

level of an asset. This translates in the fact that the input x for the encoder is accompanied by additional,

market relevant, data. This additional data influences the learning process of the neural network. In gen-

eration of new data, the decoder is now fed the sampled z and a condition. The condition we consider is

a month of return paths. That is, one generated scenario is generated conditional on a month of sample data.

The details of the neural networks are found in the code for the Variational Autoencoder, class CVAE,

Appendix A.3. Training of the VAE is done with an Adaptive Moment Estimation (Adam) optimizer. An

advantage of this technique is fast convergence, a disadvantage is that the method is computationally costly

(Doshi, 2019). The loss function is defined as a linear combination of the autoencoder loss (or decoded loss)

and the latent loss shown in Equation (30). The decoded loss is defined as the squared difference between

input and output (Equation 31) and the latent loss is defined so that the distribution of the latent vector z

does not diverge too much from a standard Gaussian distribution (Equation 32). δ represents the trade-off

between the decoded loss and the latent loss. The value for δ is set at 0.2. The market conditions that are

used are the log returns of different sample paths. The function tensor.reduced sum() reduces the the
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dimension of a vector by summation of the elements.

loss = (1− δ) ∗ decoded loss+ δ ∗ latent loss (30)

decoded loss = ‖x− x̃‖2 (31)

latent loss = −0.5 ∗ (1 + tensor.reduced sum(σ − µ− exp(σ))) (32)

The inputs for the VAE should have the same shape as the desired output so input and output can be

compared for training purposes. The raw sample data has dimensions (# days, # assets) with (# days)

the total number of trading days considered and (# assets) the number of assets in the considered universe.

The shape of our desired output is (# trading days in one month, # assets) as we want to generate monthly

scenarios. As we need multiple inputs, the sample data is split up in trading months, which results in a

total input dimension of (# months in sample data, # trading days in one month, # assets). This results

in (# months in data) input elements of shape (# trading days in one month, # assets) resulting in output

elements of shape (# trading days in one month, # assets). In other words, the inputs that are used are the

monthly paths for all the different assets in the universe. In addition to each input element, a condition is

given. The condition has the same shape and is the monthly data previous of the considered input data. The

shape of our input required a change in the VAE provided by (Bühler et al., 2020) from a univariate VAE

to a multivariate VAE to facilitate for multivariate inputs and outputs and multivariate conditions. The

multivariate character asked for change of tensor operations and also for an increase of hidden nodes and

latent nodes in every layer of the neural network due to the increase in complexity. The resulting code for

the multivariate VAE generator can be found in Appendix A.3 in class CVAE and class MarketGenerator.

The pseudo algorithm for the scenario generation is given by Algorithm 3.

Algorithm 3: Variational Autoencoder scenario generation
Result: VAE log returns

(a) Data split-up in cumulative monthly paths of all assets.

(b) Train the neural network based on loss Function 30 with tensorflow.AdamOptimizer and

learning rate = 0.005 for 10.000 iterations.

(c) Generate paths by feeding sample vectors z and an input element as condition to the decoder.

The main advantage of a machine learning method is that instead of determining a certain underlying

structure to reach an objective, the method uses a predefined objective and determines the ideal underlying

structure required to optimise for the objective. This means that one can alter the objective when desired.

Due to the accessibility of the VAE algorithm, adapting its objective is made possible without doing major

harm to the algorithm. In the spirit of the iVaR portfolio optimization, which is explained further, the

backtesting data should have realistic drawdown distributions for each asset. In order to improve the
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similarity of drawdown distributions in the generated paths of each asset, we adapt the previously defined

objective Function (31)) to Equation (33), with the co drawdown loss defined by Equation (34) and γ a

hyperparameter to regulate the influence of the co drawdown loss on the total loss. The co drawdown of an

asset i, defined as the difference in drawdown between the input and output time series of asset i, is given by

Equation (35) with Mt indicating the running max of a time series at moment t and Vt the value at moment

t in that time series. This change in loss function is aimed at adaption of the training of the neural network

in order for the neural network to specifically take into account drawdown distribution and to be able to

generate data samples with a more realistic drawdown.

decoded loss = ‖x− x̃‖2 + γ ∗ co drawdown loss (33)

co drawdown loss =
n∑
i=1

co drawdowni (34)

co drawdowni = ((0.5 ∗Mt,iorg − Vt,iorg ) + (0.5 ∗Mt,igen − Vt,igen))/(Mt,idiff − Vt,idiff ) (35)

Vt,idiff = Vt,iorg − Vt,igen (36)

3.2 Quality assessment methods

In the following subsection we describe the methods that are used to assess the quality of the generated

financial time series. The first test consists of checking the stylized facts for each financial time series that

is generated. The second test is a process discriminator based on mathematical signatures, and is used in

order to assess the equality between sample time series and simulated time series in underlying distribution.

The third and final test compares the distribution of drawdowns in the sample paths against the distribution

of drawdowns in the generated paths of each asset based on the Kolmogorov-Smirnov (KS) test.

3.2.1 Stylized facts in financial time series

The stylized facts that will be checked are the absence of linear autocorrelations in log returns, heavy tailed

distribution of log returns, negatively skewed distribution of log returns, volatility clustering in log returns,

slow decay of nonlinear autocorrelation in log returns and the leverage effect in log returns. Considering

that these are stylized facts for univariate financial time series, there is need for a system that can provide

information on the average univariate quality of the simulated time series, without having to manually check

the quality of the time series of each asset with standard visual methods. Therefore a scoring system was

developed that can provide the frequency of appearance of a stylized fact in the time series of the assets in the

universe answering the question: ”For how many assets does the time series exhibit a certain stylized fact?”.

For each stylized fact, a rule is designed. If, for a single asset, the univariate time series passes this rule, a

point is awarded for that asset. After all assets are checked on that stylized fact, an overall score for that styl-

ized fact is returned as the number of points awarded divided by the total number of assets in the universe.
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This results in the relative frequency of the appearance of a stylized fact in the generated time series. With

a rule for every considered stylized fact, a scoring chart for the generated universe is created. This scoring

chart is also provided for the sample data, which then gives us an idea of which frequency of each stylized fact

to aim for. For each stylized fact the thinking process and eventual rules are provided in the following section.

We divide these six stylized facts in two groups. The first group are the dynamic stylized facts: linear

autocorrelation, nonlinear autocorrelation, volatility clustering and leverage effect. The second group are

the distribution related stylized facts: heavy tails and skewness. For the first group, the analysis of the

different stylized facts is very similar. For each stylized fact we define a specific correlation function, the

values to expect from this correlation function, and the scoring rule that is eventually used. A visual inter-

pretation of the rules are provided for better understanding. For the second group the rules are provided

from theoretical basis.

The first correlation based stylized fact is the absence of linear autocorrelation in log returns. Linear

autocorrelation is defined by Equation (37) with corr(x, y) representing the correlation between variable x

and variable y. In this case variable x are the log returns and variable y are the delayed log returns. It can

be assumed that once the time difference τ for which we calculate the linear autocorrelation is larger than 15

minutes, the correlation becomes zero (Cont, 2001). As we are considering daily asset returns, the autocor-

relation should be zero for any considered lag τ . Figure 4 (a) shows the autocorrelation for different lags τ ,

with the blue band indication the 99% confidence interval around zero. The autocorrelation for different lags

can be calculated using the acf() function of the statsmodels python package, which additionally returns

the confidence interval around zero. Using this information from the python package, the rule becomes that

if a sufficient percentage of the autocorrelations defined by Equation (37) for different values of τ are in the

calculated confidence interval, a point is awarded to the asset. Visually this means that sufficient blue dots

have to be in the light blue band. The considered confidence interval is the 99% confidence interval, the

lags considered are between 1 and 10, and the required percentage of autocorrelations in the 99% interval is

80%. The code for this test is Function absence of linear autocorrelations() in class StylizedFacts

in Appendix A.4.

C(τ) = corr(r(t,∆t), r(t+ τ,∆t)) (37)

Although there is no autocorrelation in log returns according to the first test, a stylized fact was discovered

saying that autocorrelation is found in nonlinear functions of the log returns. This would mean that the

increments of the time series are not independent, implying that there is a structured process behind the

log returns and they are not just random walks. This is derived from the definition of a random walk that

includes the independence of the increments. Such a nonlinear dependency is also called persistence and
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in the case of financial log returns, this persistence is positive. In general, the autocorrelation function of

a nonlinear function of log returns is given by Equation (38). For the stylized facts test, the considered

nonlinear function is f(x) → ln(1 + x2). This function shows the most significant values in the tests of

(Cont, 2001). Figure 4(b) shows the nonlinear autocorrelation based on Equation (38) and function f(x)

for different values of τ and the 95% confidence interval around zero. The autocorrelation and confidence

interval are again calculated with the acf() function. The rule goes: For an asset to be rewarded a point

for presence of nonlinear autocorrelation, a percentage of the the autocorrelations has to be higher than the

confidence interval around zero. The considered confidence interval is 95%, the considered lags are 1 to 3

days, and the required percentage to be above the confidence interval is 66%. The function for this test named

nonlinear autocorrelations in returns can also be found under class StylizedFacts, Appendix A.4.

Cf (τ) = corr(f(r(t+ τ,∆t)), f(r(t,∆t))) (38)

A special case of nonlinear autocorrelation in log returns is with f(x)→ |x|2. This results in autocorrelation

Equation (39) and is commonly used as a measure for autoregressive conditional heteroskedasticity, better

known as volatility clustering. This is, days with high volatility are followed by days with high volatility

and days with low volatility are followed by low volatility. This is very intuitive as high volatility induces

uncertainty for investors, which will encourage investors to take action. Low volatility has the opposite

effect and encourages the investor to hold. These autocorrelations between squared returns can be seen as

an advocate for autocorrelations between volatilities, hence the name of the stylized fact.Figure 4(c) gives

an illustration of volatility clustering for different values of τ in Equation (39) with a confidence interval

of 95%. The rule is exactly the same as the rule for presence of nonlinear autocorrelation with the same

rule parameter values. The function called volatility clustering() can be found in the same class

StylizedFacts, Appendix A.4.

C2(τ) = corr(|r(t+ τ,∆t)|2, |r(t,∆t)|2) (39)

A final case a dynamic stylized fact is the leverage effect. For the leverage effect we do not assume serial

dependence but dependence between two different time series. The first time series is the absolute squared

return, the second time series is the log return. The correlation equation is given by Equation (40). Only

a positive τ is considered as in general the leverage effect is negligible for a negative τ (Bouchaud et al.,

2001). Figure 4(d) gives a visual representation of the leverage effect for different values of τ and a 95%

confidence interval around zero. As far as our knowledge goes, there is no predefined python package for this

correlation function and its confidence interval. That is why, based on the source code of the acf() function,

the functions leverage effect() and leverage effect plot(). The first function gives the correlations

for different values of τ , using the build in pandas function corr() and the confidence interval, calculated

according to the formula applied in the statsmodels package, which is the Bartlett formula. The second
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function provides a plot that is inspired by the plot acf() function. The rule for presence of the leverage

effect is then, for an asset to be rewarded a point for the presence of the leverage effect, 50% of the correlation

values for τ going from 1 to 10, has to be below the 95% confidence interval around zero. The test is coded

as function leverage effect fact() under class StylizedFacts.

L(τ) = corr((|r + τ,∆t)|2, r(t,∆t)) (40)

Figure 4: (a) linear autocorrelation for lag 0 to 20 and with confidence interval 95% of a random asset of the asset

universe. (b) nonlinear autocorrelation based on Equation 38 for lag 0 to 20 and with confidence interval 95% of same

asset as in Figure (a). (c) volatility clustering based on Equation (39) for lag 0 to 20 and with confidence interval

95% of same asset as in Figure (a). (d) leverage effect based on Equation (40) for lag 0 to 20 and with confidence

interval 95% of same asset as in Figure (a).

The two remaining stylized facts are related to the distribution of the log returns. In many methods in

quantitative finance, the assumption is made that the log returns of an asset are normally distributed.

However, the stylized facts tell us that the distribution of the log returns of an asset are heavy tailed and

negatively skewed. Figure 5, gives a visual comparison between a normal distribution and the approximated

distribution of the log returns of a financial asset from the considered universe. Firstly, from the figure it

can be derived that the distribution of the log returns of the considered asset is asymmetric to the right

compared to the symmetric distribution of the normal distribution. This results in a negative third moment
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of the underlying process, E[X3], while the third moment of a normal distribution is equal to zero E[D3] = 0.

Secondly, from the figure can also be derived that the tails of the log return distribution are heavier than the

tails of the normal distribution. This translates in a higher fourth moment of the underlying process, E[X4],

compared to the fourth moment of the normal distribution E[D4] = 3. This results in two rules. Firstly,

the asset is awarded a point for skewness if the third moment of the generated time series of the asset is

smaller than zero. Secondly, the asset is awarded a point for heavy tails if the fourth moment of the time

series of the asset is larger than 3. The frequency of appearance is determined by summing the points for

each stylized facts and divided the sum by the number of assets. The functions used in the test are named

gain loss asymmetry() and heavy tails() respectively and are part of class StylizedFacts.

Figure 5: Comparison between the standardized log return distribution of a random asset and a standardized normal

distribution. The peak and heavy tails indicate higher kurtosis for the log return distribution. The peak being on

the right of the 0.0 vertical grid line shows that the distribution is negatively skewed

3.2.2 Process discriminator for financial time series

The stylized facts test allows us to check if certain characteristics that are expected return in the simulated

data, however the test does not give us any quantitative information regarding similarity between sample

data and generated data. A complete theoretical description of the test would take another thesis, so we

focus on the intuition behind the test and what the outcome means. For the technical details I refer to

Chevyrev and Oberhauser (2018).

Chevyrev and Oberhauser (2018) developed a process discriminator that provides quantitative informa-

tion regarding similarity of underlying distribution of data sets. Applied to our case, this means that we

split the sample data set into multiple monthly scenarios as described for the variational autoencoder. For

each asset, we take the path of that asset out of each scenario. These paths of one asset is the first set used
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for the test. The second set of the test are the generated paths for one asset. The process discriminator

first determines an underlying law or process for the first set of paths, the sample paths. The idea is that

because they represent the same asset, the paths should have the same underlying distribution. Second, the

process discriminator determines the underlying process of the generated path set, the second set. Third, the

process discriminator determines if the underlying process of the sample paths of an asset is the same as the

underlying process of the generated paths of that asset. Applied to every asset, this gives us a quantitative

measure for how many assets we have replicated the underlying process correctly.

The test is based on a theoretical concept called the signature of a path. A formal definition of a path

is given in Appendix B.1. In essence, the signature of a path in a finite set of numbers characterising set

path. This means that the signature is a mapping of the path to a finite set of numbers. Such a mapping

of data from the original path space to a smaller vector space, allows characterization of a path in a lower

dimensional space. The main application of such a mapping is machine learning, as a mapping to a lower

dimensional space allows for improved learning. Appendix B.1 describes how the signature of a path is

calculated mathematically.

Chevyrev and Oberhauser (2018) uses the signature mapping to determine the underlying process of several

paths of one asset. The paper starts from the idea that a normalized sequence of moments characterizes

the law of any finite-dimensional random variable. The problem is that this reasoning cannot be applied

to paths as the path-space is infinite dimensional and this rule only works for a finite-dimensional random

variable. This is where signatures come in. Signatures are a mapping that map from the path space to

a finite dimensional space. After the mapping, a normalized sequence of signature moments can be used

to describe the underlying law of the paths. This can be done for both the sample paths of an asset and

the generated paths of that asset, resulting in the underlying law for both sets of paths, which can then be

compared. If these laws are equal, it can be said that both sample paths and generated paths have the same

underlying distribution.

As we are considering multiple assets, this test has to be carried out for all the assets separately. We

gather the sample paths and generated paths of each asset and compare the underlying processes of these

sets of paths estimated with the method of normalised signature moments. Analogous to the stylized facts

check, we build a scoring system. For each asset for which we find that the underlying distribution is the

same for the generated paths as for the sample paths, a point is awarded. The overall score of the model, is

the total amount of points, divided by the number of assets. This score represents the frequency of appear-

ance of equivalence in underlying process between sample paths and generated paths of the different assets.
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3.2.3 iVaR and drawdown distribution in financial time series

InvestSuite provides banks, brokers, wealth managers and other financial institutions with investment solu-

tions with at its core a portfolio construction methodology based on an in-house measure of risk: InvestSuite

Value-at-Risk (iVaR). This risk measure captures the frequency, the magnitude and the duration of losses,

also called drawdowns, and can be understood as the average expected drawdown percentage in a portfolio.

Minimising risk against this measure has the goal to provide the smoothest possible evolution for the con-

sidered portfolio. Figure 6 gives a visual representation of how iVaR can be understood.

The mathematics behind the measure are very intuitive. Mt is defined as the rolling maximum of an

Figure 6: Visual representation of iVaR. The dark pink area indicates the evolution of the portfolio value throughout

time. The light pink areas indicate the drawdown contributions, and the iVaR value is calculated as the average of

all these drawdown areas (InvestSuite, 2019).

asset or portfolio with value Vt at time t and given by Equation (41). The corresponding drawdown, the dif-

ference between current rolling maximum and current value is then given by Equation (42). The drawdowns

are summed over the entire considered time interval defining the accumulated drawdown with Equation (43).

The iVaR value is then calculated using Equation (44).

Mt = max
s≤t

Vs (41)

Dt = Mt − Vt (42)

ADT =
T∑
t=1

(Dt) (43)

iV aR =
∑T
t=1 (Dt)
T

(44)
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Next to the standard financial time series characteristics that we considered in previous tests, applying the

generated data for backtesting of an iVaR based portfolio optimization algorithm requires realistic drawdowns

in the simulated data. The performance of the different generating methods in terms of conserving the

drawdown distribution in the data is determined by comparing the drawdown distribution between the

sample paths and the generated paths of each asset. That is, for each asset, we collect the sample paths

and the generated paths and then the drawdown distribution of one set of paths is given by the mean of

Dt for every path at time t, with Dt calculated with Equation (42) for each path. Figure 7 gives a visual

representation of the original distribution of the drawdowns of the paths of one asset from the universe.

The sample drawdown distribution and the drawdown distribution of the generated paths is compared by

Figure 7: Visual representation of the drawdown distribution of the sample paths of one asset of the considered

universe. Mainly small drawdowns with only a few extremes in the distribution.

means of the two-sample Kolmogorov-Smirnov test for goodness of fit. The test compares the underlying

continuous distributions F (x) and G(y) of two independent variables x and y, and returns the KS statistic

and the p-value of the statistic. If the value of the KS statistic is small and/or the p-value is high, the

null-hypothesis F (x) = G(y) for all x and all y, cannot be rejected meaning that stochastic variables x and y

have the same distribution (Scipy, 2021). For each model, the minimum KS-value, the maximum KS-value,

and the median KS-value accompanied by their p-value are given, to give an idea of the performance of the

different models on conserving the drawdowns of the original data.

4 Data

This section provides a summary description of the considered sample data. First, we discuss the content

and the choice of the data universe. Second, we provide an overview of standard characteristics of the data,

and apply the stylized facts test on the sample data.
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4.1 Sample data: EURO STOXX 50

In portfolio optimization, there are often constraints regarding asset classes, asset regions, or other asset

specific characteristics. We consider the case that equity is the only allowed asset class, the asset region is

Europe and we want to only invest in the largest public companies as we believe these give stable returns.

This translates into the asset universe covered under the EURO STOXX 50 index. The EURO STOXX

50 Index is a European based index that covers 50 supersector leaders in 8 European countries: Belgium,

Finland, France, Germany, Ireland, Italy, the Netherlands, and Spain (STOXX, 2021). This index is chosen

for our research as it is known for being relatively stable as only the largest European blue-chip companies

are considered. The index covers 50 assets, a sizeable universe which challenges both the univariate and

multivariate side of the applied methods. A larger universe would cause trouble with computational effort

and run times of the code.

Figure 8 provides an overview of the historic performance of a portfolio containing all assets of the uni-

verse, with a 1/n weight allocation rebalanced at every time point. This very simple portfolio describes the

market conditions of the sample data. The 50 assets in our portfolio are the 50 assets covered by the index

on the last day of our data set. This means that we do not take into account the rebalacing of the index and

constantly work with the same assets. The period that is considered is a 7 year period from 2014-01-01 until

2021-01-01. The number of years is chosen in function of the needed amount of data for proper training of

parameters and to avoid overfitting on a certain period. This period does include the substantial COVID-19

dip, followed by the steep regeneration of the market over the year 2020. This event might challenge the

different models. Access to the data is provided by InvestSuite, which uses the Datastream data base of

Refinitiv (REFINITIV, 2021).

4.2 Sample data characteristics

Table 13 in Appendix C.1 provides a list with the name of all constituents covered in the index accompanied

by their annualized return and annualized standard deviation of returns. In general we see a positive mean

for the different assets and a comparable standard deviation. The best performing stock is the large semi-

conductors related company, ASML Holding, with an annualized return of 30.8%. The worst performing

company based on annualized returns is BAYER, with an annualized return of 5,9%. The asset with the

highest annualized volatility is the airplane constructor AIRBUS, with an annualized volatility of 36.7%.

The asset with the lowest volatility is PROSUS, with an annualized volatility of 16%.

The correlation of the sample data, and of the generated data further, is analysed by looking at the maxi-

mum correlation between different assets, the mean correlation between assets, and the minimum correlation
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Figure 8: Plot of universe portfolio with 1/n weight allocation with daily rebalancing. The plot is made for the 50

assets currently covered under the EURO STOXX 50 index over a period of 7 years: 2014-01-01 - 2021-01-01. There

is a steep drop in cumulative returns of the portfolio due to COVID-19, after which there follows an even stronger

regeneration.

between assets. These values give us a range of to expect correlations from the different simulation models

and are given in Table 1.

Table 1: Test results for the maximum, mean, and minimum correlation of the sample data. There is a small to large

positive correlation between the different assets of the universe. The final years with COVID and the regeneration

after will have increased the correlation values.

Correlation Maximum Mean Minimum

Sample data 0.8644 0.4928 0.1043

As we are generating financial returns for the considered universe, we need to have an idea of the frequency

of appearance of the different stylized facts in the sample data. This allows us to compare the quality of the

generated data with the sample data regarding presence of stylized facts in the generated time series. These

results form a benchmark for the results of the different models. The results of the stylized facts test for the

sample data over the entire time period are given in Table 2. As expected, the results of the stylized facts

test for the sample data indicate presence of these stylized facts in most of the time series of the different

assets.
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Table 2: Stylized fact scores of the sample data using the stylized facts tests presented in methodology. As we know

that this is real financial data, the scores should be reasonably high. The test is adapted to find a reasonable score

for every stylized fact.

Stylized fact No lin. acorr. Nonlin. acorr. Fat tails Skewed Vol. clus. Lev. eff.

Sample data 0.80 0.88 1.00 0.90 0.98 0.86

5 Results

In section 3, three different approaches were considered for the generation of multivariate financial time series.

This section covers the results of the discussed approaches with the EURO STOXX 50 universe as sample

data, discussed in section 4. Figure 9 gives a schematic overview of the implementation of the discussed

models and tests. We start from raw sample data, which needs pre-treatment specific to each model. The

model then produces the different scenarios according to the specified algorithms. Each model reproduces

84 scenarios. 84 because we generate new scenarios for each condition with the CVAE, and there are 84

different conditions when considering the current data set. From these scenarios, we take one scenario for

correlation comparison and simulation analysis. For the other tests a rearrangement of the data is needed.

For both process discriminator test and drawdown distribution test, we look at all scenario paths of one

single asset, which corresponds to 84 scenarios of one asset. For the stylized facts test a longer data set is

needed for each asset, which is why all the scenarios are combined to one long scenario resulting in a 84

month time series for each asset. For this combination of scenarios, the correlation is also compared with

the sample correlation.

5.1 DCC-GARCH

Before Algorithm 1 can be applied to generate financial returns with the DCC-GARCH approach, the

parameters of the DCC-GARCH model have to be estimated based on the available data. The estimation of

parameters for the DCC(M = 1,N = 1)-GARCH(P = 1,Q = 1) model returns for each asset α0, α, and β.

These parameters are summarized in Table 14 in Apppendix C.2. Furthermore, the estimation results for d,

and b, the parameters of the dynamical conditional correlation estimation, are given in Table 3. Looking at

the values of the different parameters, they are comparable with estimations for the DCC parameters found

in literature (Lewinson, 2020). We see a large dependence on Qt−1 for the calculation of Qt, and a small

dependence on εtεTt with εt the residuals of the univariate GARCH estimation at time t based on Algorithm

1.
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Figure 9: Graphical representation of the presented methodology, accompanied by the dimensions of the datasets

that are used for each test. We start from raw sample data that is processed. The model uses the processed data

and generates 84 one-month scenarios. This data is then rearranged to accommodate for the different tests.

Table 3: DCC parameter estimation values. A large weight is assigned to the correlation of the previous time step, a

small weight is assigned to the residuals matrix, and a small weight is assigned to the constant conditional correlation:

1-(a+b).

DCC parameter d b 1-(d+b)

Value 0.004538 0.8719 0.1236

First, we investigate one generated scenario from the model. Figure 10 gives a visual representation of one

scenario of multivariate paths generated for the universe of 50 assets over a period of 19 days. The figure

suggests that the estimated correlations between assets are very high. Table 4 proves this statement. The

minimum correlation of the scenario of Figure 10 is higher than the mean correlation between assets in the

sample data. The high correlation could be caused by a number of reasons. With the high value of b, a high

estimated Qt+k−1 could cause a high Qt+k in Algorithm 1, which on its term causes a high Qt+k+1 and so

on. This means that if the correlation calculated for the final day of the sample data is high, this might result

in high correlations for the rest of the predicted path. Figure 8 indicates a strong upwards movement of the

market over the final year. Such large movements in the market goes hand in hand with higher correlations.

These higher correlations at the end of the sample period might cause high correlations in the DCC-GARCH

scenarios. Another reason for the high correlation might be estimation errors in the volatility, causing high

residuals in the GARCH estimation. These high residuals then result in a high correlation. Furthermore,

the same high correlations are found when considering the combination of all scenarios. This tells us that
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over all the different scenarios, the correlation should be very similar.

Figure 10: Plot of one generated scenario for the considered universe using the DCC-GARCH approach. The plot

indicates very high correlation between assets but stays in reasonable return bounds.

Table 4: Test results for the correlation of 1 DCC scenario shown in Figure 10 and all scenarios combined in one

time series. Both short period and long period correlations are high compared to the correlation of the sample data.

The cause of the high correlations can be the high parameter b value or high estimation errors in the GARCH model.

Type Sample data DCC-GARCH 1 scenario DCC-GARCH all scenarios

Maximum 0.8644 0.9998 0.9996

Mean 0.4928 0.9759 0.9694

Minimum 0.1043 0.7760 0.7461

A second test for the generated paths over one predicted period is the process discriminator test provided

by (Chevyrev and Oberhauser, 2018). 84 paths are gathered for each asset separately and it is tested if

these paths have the same underlying generative process as the sample paths of that asset. Under the cir-

cumstances described in section 3, we find a score of 0.86. This means that according to this test 86% of

the assets, the generated paths have the same underlying distribution as the sample paths. This outcome is

interesting as by construction, the DCC-GARCH defines a underlying distribution for the generated paths.

This result shows that the assumed structure in the DCC-GARCH approximates the underlying structure

of the sample paths for 86% of the assets.

A third test for the generated paths of each asset is to test if the drawdown distribution is similar to

the drawdown distribution of the sample paths of that asset by means of the Kolmogorov-Smirnov test.
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Table 8 gives the maximum, median and minimum KS values accompanied by their respective p-value. The

hypothesis of equal distributions is rejected for maximum, median and minimum KS-value with a confidence

level of 95%. This result shows that the DCC-GARCH model is not capable of simulating the drawdown

distributions of the sample paths.

Table 5: Test results for the distribution comparison of the DCC-GARCH generated paths and the sample paths.

A KS-value accompanied by a p-value is found for every asset. This table shows the Maximum KS-value, the median

KS-value, and the minimum KS-value accompanied by their respective p-values. For maximum, median and minimum

KS-value the test of similar drawdown distribution is rejected with a confidence level of 95%.

Type KS-value p-value

Maximum 0.8095 < 0.01

Median 0.5238 < 0.01

Minimum 0.2500 0.0102

The last test is testing the stylized facts on the time series created by combination of all generated scenarios.

Table 6 shows the results of the stylized facts test for the DCC-GARCH model. High appearance frequency is

found for absence of linear autocorrelation. nonlinear correlation, heavy tails, and volatility clustering. This

partly matches with the hypothesis that the DCC-GARCH would generate absence of linear autocorrelation,

nonlinear correlation, and volatility clustering. The heavy tails score indicates that while conditionally there

are no heavy tails according to the structure of the DCC-GARCH, unconditionally this result changes. The

appearance frequency for skewness and the leverage effect is lower compared to the sample data. This is not

surprising as the structure of the model, does not account for skewness or leverage effect.

Table 6: Stylized facts scores of the DCC-GARCH generated data compared to the stylized facts scores of the

sample data. For 4 out of 6 stylized facts, the DCC-GARCH output performs likewise to the sample data or better.

For 2 out of 6 stylized facts, the appearance frequency of these stylised facts is lower than the appearance frequency

in the sample data.

Stylized Fact No lin. acorr. Nonlin. acorr. Fat tails Skewed Vol. clus. Lev. eff.

Sample data 0.80 0.88 1.00 0.90 0.98 0.86

DCC-GARCH 1.00 0.98 1.00 0.16 0.98 0.00
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5.2 Block Bootstrap

For the block bootstrap there is no estimation of parameters. This means that Algorithm 2 can be im-

mediately applied to the sample data. We consider one generated scenario in Figure 11, which plots one

generated scenario of the block bootstrap method. This figure immediately indicates that the correlation

between assets is much lower compared to the correlation simulated by the DCC-GARCH model. Table 7

confirms this statement. The mean and minimum correlation of the considered scenario are lower than the

sample mean and minimum correlation, which were already lower than the minimum correlation from the

generated DCC-GARCH scenario. Furthermore, the combination of scenarios gives a likewise result. These

correlations are close to the sample correlations. This result confirms the hypothesis that applying the block

bootstrap resampling method keeps the relation between the different assets.

Figure 11: Plot of one generated scenario for the considered universe using the block bootstrap approach.

Table 7: Test results for the maximum, mean, and minimum correlation of one generated scenario with block

bootstrap and all generated scenarios with block bootstrap combined. The results indicate that the correlation

between assets is kept during resampling with moving block bootstrap.

Type Sample data Bootstrap 1 scenario Bootstrap all scenarios

Maximum 0.8644 0.9873 0.8690

Mean 0.4928 0.3539 0.4895

Minimum 0.1043 -0.6580 0.0917

The process discriminator test returns a results of 1.0. This means that for every asset, the generated paths

have the same underlying distribution as the sample paths. From this result it can be concluded that when
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using a moving block bootstrap resampling with blocksize five and overlap one, the newly formed one month

paths, consisting of four blocks give the same underlying distribution for the paths as for the sample paths.

The results of the drawdown distribution test are summarized in Table 8, which gives the max, median

and minimum KS values accompanied by their respective p-value. The hypothesis of equal distributions is

rejected only for the maximum KS-value and not for the median and minimum value considering a confidence

interval of 95%. We see an improvement of the KS-values compared to the DCC-GARCH model, as the

KS-values are lower and the p-values are higher for the median and minimum KS-value. This means that the

block bootstrap model generates paths such that for more assets the drawdown distribution from its paths

matches the drawdown distribution from its sample paths.

Table 8: Test results for the drawdown distribution comparison of the block bootstrap generated paths and the

sample paths. This table shows the Maximum KS-value, the median KS-value, and the minimum KS-value accom-

panied by their respective p-values. The hypothesis of equal distributions is rejected only for the maximum KS-value

and not for the median and minimum value considering a confidence interval of 95%.

Type KS-value p-value

Maximum 0.3929 < 0.01

Median 0.1190 0.5940

Minimum 0.0714 0.9839

Table 9 returns the results of the stylized facts test on the long period time series constructed by adding

the different paths. The stylized fact test indicates that combining all the different scenarios does not

hurt the frequency of appearance of absence of linear autocorrelation, nonlinear autocorrelation, heavy tails

distribution or volatility clustering. The appearance of skewness and the leverage effect is however lower

compared to the sample data. The under performance of the leverage effect compared to the other dynamic

stylized facts has to do with the fact that it considers significantly more lags in the scoring rule, meaning that

the effect of the resampling has a larger influence on this stylized fact than on the other dynamic stylized

facts. The results however are very sensitive to the blocks that are selected in the generation of scenarios,

as each scenario is generated from the same pool of blocks, there is change that many block return in the

combined scenario time series.
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Table 9: Stylized facts scores of the block bootstrap generated data compared to the stylized facts scores of the

sample data. Comparable results are obtained for absence of linear autocorrelation, nonlinear autocorrelation, heavy

tails distribution, and volatility clustering. Skewness and leverage effect appear less frequent in the time series of the

different assets.

Stylized Fact No lin. acorr. Nonlin. acorr. Fat tails Skewed Vol. clus. Lev. eff.

Sample data 0.80 0.88 1.00 0.90 0.98 0.86

Bootstrap 0.96 0.84 1.00 0.56 0.84 0.18

5.3 Variational Autoencoder

The Variational Autoencoder generates 84 scenarios, which are all based on a different condition. The

different conditions are the different monthly sample paths, and these conditions influence the outcome of

the generator in the sense that the generator assumes that is generates a scenario that follows after the

scenario that is given as a condition. The reason the VAE was selected as our neural network model was

because of its simplicity and the opportunity to change the objective function. That is why the first and

main result discussed for the VAE is the performance of the model regarding the simulation of realistic

drawdown distributions. Table 10 gives an overview of the maximum, median and minimum KS values and

their matching p-values for different values of γ. The table shows that when γ = 0, the hypothesis of equal

drawdown distributions between sample paths and generated paths is rejected at a confidence level of 95%

for the maximum KS value and the median KS value. When γ > 0 there is a general improvement of the

median and minimum KS values as they become smaller. For γ = 1.5 and γ = 2, the hypothesis cannot be

rejected at a confidence interval of 95% for the median KS values indicating further improvement. This result

indicates that the additional term in the decoded loss that accounts for similarity in drawdowns between

input and output does have a positive effect on the similarity in drawdowns of the generated paths, which

suggests that the VAE can be improved towards market generation for specific applications like iVaR.

The remaining results of the VAE for analysis of one scenario and all scenarios combined are given for a

γ = 0. Figure 12 plots one generated scenario of the VAE and Table 11 gives the correlations of the plotted

scenario and of all the scenarios combined. The correlation values of 1 scenario and all scenarios combined

are comparable to the sample correlation values.

For the single scenarios of the VAE, we check if the different paths of separate assets have the the same

underlying distribution as their sample paths using the signature based process discriminator. The process
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Table 10: Maximum, median, and minimum KS values with their respective p-values for different values of γ. The

table shows that there is an improvement in three out of four cases when γ is not zero. For a γ of two the best

improvement is found.

γ Max KS p-value Median KS p-value Min KS p-value

γ = 0 0.8095 < 0.01 0.2976 < 0.01 0.1310 0.4697

γ = 1.2 0.8214 < 0.01 0.2500 0.0102 0.0833 0.9347

γ = 1.5 0.8095 < 0.01 0.2261 0.0269 0.0952 0.8438

γ = 1.8 0.8100 < 0.01 0.3333 < 0.01 0.1190 0.5940

γ = 2.0 0.8095 < 0.01 0.1905 0.0949 0.0833 0.9347

Figure 12: Plot of one generated scenario for the considered universe using the variational autoencoder method.

The scenario indicates realistic monthly returns and seems to stabilise near the end of the generated month.

discriminator returns a value of 0.98, meaning that for 98% of the assets, the generated paths and the sample

paths of an asset have the same underlying distribution according to the process discriminator test. This

result suggests that the VAE is capable of learning the underlying process of the sample paths.

Combining the different scenarios results in one long term simulation of the universe on which the styl-

ized facts test can be applied. The results of the test are given in Table 12. The table indicates that only the

heavy tails stylized fact appears frequently in the time series of different assets. The other five stylized facts

appear much less frequent compared to the sample data. An explanation for this could be the influence of the

conditions on which the scenarios are generated. Due to the conditions there might be a lack of uniformity

between the different scenarios.
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Table 11: Test results for the maximum, mean, and minimum correlation of one generated scenario with the

variational autoencoder and all generated scenarios combined. The results indicate that the correlation between

assets is learned by the variational autoencoder.

Type Sample data VAE 1 scenario VAE all scenarios

Maximum 0.8644 0.9168 0.8215

Mean 0.4928 0.5855 0.5349

Minimum 0.1043 -0.0182 0.2041

Table 12: Stylized facts scores of the variational autoencoder generated data compared to the stylized facts scores

of the Sample data. Heavy tails seems to appear in the time series of most assets, but the other five stylized facts

lack appearance compared to the sample data.

Stylized Fact No lin. acorr. Nonlin. acorr. Fat tails Skewed Vol. clus. Lev. eff.

Sample data 0.80 0.88 1.00 0.90 0.98 0.86

VAE 0.14 0.04 0.86 0.28 0.04 0.40

6 Conclusion

The goal of this paper was to generate multivariate financial time series data that can be applied in a

backtest of a portfolio optimization algorithm. In order to be useful for a general backtest of a portfolio

optimization, the generated data had to contain the basic financial time series characteristics or stylized

facts, show realistic multivariate behaviour, and match in underlying distribution. When backtesting for

InvestSuite Value at Risk however, an additional criterion for the generated data was added. The generated

data needed to show similarity in drawdown distribution for each asset. iVaR uses the drawdown distribu-

tion to reduce overall losses in the portfolio. For the standard financial data generation three models where

compared in regards to the different requirements. A DCC-GARCH based generator, a moving block boot-

strap generator, and a variational autoencoder. Furthermore, the models were analysed on their capability

of reproducing the drawdown distributions in the assets. All models had their advantages and disadvantages

regarding the different tests, but the VAE had one main advantage. Where the other models where stiff in

regards to focusing on certain characteristics, the VAE could be adapted to specifically improve drawdown

characteristic. This would mean that a VAE can be used to generate financial data for any application that

requires similarity in a certain specific characteristic of a time series. This opens up numerous possibilities for

finance research where data is scarce. The VAE can operate in a scarce data environment and generate new

data that can specifically focus on certain characteristics of the data at hand that one want to research. An

example of this could be generation of extreme value data which could then be used for improved risk analysis.
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For further research, two interesting directions can be indicated regarding improvement of the VAE. The

first direction is looking at the nature of the input data. In this work, the inputs where the paths of the

assets. A possible improvement however, could be found in changing the nature of the input by making use

of a mapping. A multivariate signature mapping of the paths would reduce the dimension of the input which

helps the learning of the VAE and might preserve the multivariate relations better. Next to signature map-

ping, other possible mappings exist that might improve the performance of the VAE. The second direction

of research, is additional research regarding the loss function of the VAE. The loss function that was used

now was very simple. This could however be more sophisticated which would again improve the training of

the VAE.

In conclusion, the research itself gives an insightful look on the generative performance of different types of

models both on a univariate and multivariate level and shows where different models could be improved.

Furthermore, a basis is formed of building generative models that can be optimized in regards to the specific

application of the generated data. Lastly, several research ideas are given for further research on this topic.
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A Appendices

A Code

Written code for models and testing methods.

A.1 DCC-GARCH

1 class DCC GARCH:

2 """Class that generates scenarios with dcc garch model."""

3

4 def init (self, M: int, N: int, P: int, Q: int, data: pd.DataFrame) −> None:

5 self.M = M

6 self.N = N

7 self.P = P

8 self.Q = Q

9 self.T = len(data)

10 self.n = len(data.columns)

11 self.data = data

12

13 def garch var(self, params garch: Any, data: np.array) −> np.array:

14 """Calculate variance for one asset over the whole data set."""

15 alpha0 = params garch[0]

16 alpha = params garch[1 : self.P + 1]

17 beta = params garch[self.P + 1 :]

18 var t = np.zeros(self.T)

19 lag = max(self.Q, self.P)

20 for t in range(0, self.T):

21 if t < lag:

22 var t[t] = data[t] ** 2

23 else:

24 if self.P == 1:

25 var alph = alpha * (data[t − 1] ** 2)

26 if self.Q == 1:

27 var beta = beta * var t[t − 1]

28 else:

29 var alph = np.dot(alpha, data[t − self.Q : t] ** 2)

30 var beta = np.dot(beta, var t[t − self.P : t])

31 var t[t] = alpha0 + var alph + var beta

32 assert np.all(var t > 0)

33 assert not np.isnan(var t).any()

34 return var t
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35

36 def garch loglike(self, params garch: Any, data: np.array) −> Any:

37 """Calculate loglikelihood for each asset separatly."""

38 var t = self.garch var(params garch, data)

39 Loglike = np.sum(−np.log(var t) − (data ** 2) / var t)

40 return −Loglike

41

42 def garch fit(self, data: np.array) −> Any:

43 """Minimize the negative loglikelihood to estimate the parameters."""

44 total parameters = 1 + self.P + self.Q

45 start params = np.zeros(total parameters)

46 start params[0] = 0.01

47 start params[1 : self.P + 1] = 0.01

48 start params[self.P + 1 :] = 0.97

49 bonds = []

50 for i in range(0, total parameters):

51 bonds.append((1e−6, 0.9999))

52 # If you would want a working algorithm for P,Q>1 this could be used but chosing ...

the start params is notoriously hard

53 # if max(self.P,self.Q)>1:

54 # constraint = {'type': 'ineq', 'fun': lambda x: 1 − sum(x[1:self.P+1]) − ...

sum(x[self.P+1:])}

55 # res = minimize(self.garch loglike, (start params), args=(data), bounds= bonds, ...

constraints= constraint, options={'disp':True})

56 res = minimize(self.garch loglike, (start params), args=(data), bounds=bonds)

57 return res.x

58

59 def dcc covar(self, data: pd.DataFrame, params dcc: Any, D t: np.array) −> Any:

60 """Calculate the dynamic conitional correlation matrix and residuals."""

61 # parameters a and b

62 a = params dcc[: self.M]

63 b = params dcc[self.M :]

64 # calculation of residuals and Q bar (constant conditional correlation matrix)

65 et = np.zeros((self.n, self.T))

66 Q bar = np.zeros((self.n, self.n))

67 for t in range(0, self.T):

68 et[:, t] = np.matmul(np.linalg.inv(np.diag(D t[t, :])), ...

np.transpose(data.iloc[t, :]))

69 et i = et[:, t].reshape((self.n, 1))

70 Q bar = Q bar + np.matmul(et i, et i.T)

71 Q bar = (1 / self.T) * Q bar

72 # calculation of Q t, the building stone of Rt, the dynamic conditional ...

correlation matrix
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73 lag = max(self.M, self.N)

74 Q tn = np.zeros((self.T, self.n, self.n))

75 R = np.zeros((self.T, self.n, self.n))

76 Q tn[0] = np.matmul(np.transpose(data.iloc[0, :] / 2), data.iloc[0, :] / 2)

77 for t in range(1, self.T):

78 # start values, niet van toepassing voor M=N=1, source is the dcc code on ...

which this structure is based

79 if t < lag:

80 Q tn[t] = np.matmul(np.transpose(data.iloc[t, :] / 2), data.iloc[t, :] / 2)

81 assert not np.isnan(Q tn[t]).any()

82 if lag == 1:

83 et i = et[:, t − 1].reshape((self.n, 1))

84 Q tn[t] = (1 − a − b) * Q bar + a * np.matmul(et i, et i.T) + b * Q tn[t − 1]

85 assert not np.isnan(Q tn[t]).any()

86 else:

87 a sum = np.zeros((self.n, self.n))

88 b sum = np.zeros((self.n, self.n))

89 if self.M == 1:

90 a sum = a * np.matmul(

91 et[:, t − 1].reshape((self.n, 1)),

92 np.transpose(et[:, t − 1].reshape((self.n, 1))),

93 )

94 if self.N == 1:

95 b sum = b * Q tn[t − 1]

96 else:

97 for m in range(1, self.M):

98 a sum = a sum + a[m − 1] * np.matmul(

99 et[:, t − m].reshape((self.n, 1)),

100 np.transpose(et[:, t − m].reshape((self.n, 1))),

101 )

102 for n in range(1, self.N):

103 b sum = b sum + b[n − 1] * Q tn[t − n]

104 Q tn[t] = (1 − np.sum(a) − np.sum(b)) * Q bar + a sum + b sum

105 Q star = np.diag(np.sqrt(np.diagonal(Q tn[t])))

106 R[t] = np.matmul(np.matmul(np.linalg.inv(Q star), Q tn[t]), np.linalg.inv(Q star))

107 self.Q bar = Q bar

108 self.Q tn = Q tn

109 self.et = et

110 return R, et

111

112 def dcc loglike(self, params dcc: Any, data: pd.DataFrame, D t: np.array) −> Any:

113 """Calculate loglikelihood for dcc estimation."""

114 Loglike = 0
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115 R, et = self.dcc covar(data, params dcc, D t)

116 for t in range(1, self.T):

117 et i = et[:, t].reshape((self.n, 1))

118 residual part = np.matmul(et i.T, np.matmul(np.linalg.inv(R[t]), et i))

119 determinant part = np.log(np.linalg.det(R[t]))

120 assert determinant part != 0

121 Loglike = Loglike + determinant part + residual part[0][0]

122 return Loglike

123

124 def dcc fit(self, data: pd.DataFrame) −> Any:

125 """Fit the parameters for the dynamic conditional correlation."""

126 # Estimation of garch params and calculation of the variances

127 D t = np.zeros((self.T, self.n))

128 par garch n = np.zeros((self.n, 1 + self.P + self.Q))

129 for i in range(0, self.n):

130 par garch i = self.garch fit(data.iloc[:, i].to numpy())

131 par garch n[i, :] = par garch i

132 D t[:, i] = np.sqrt(self.garch var(par garch i, data.iloc[:, i].to numpy()))

133 # Estimation of dcc params, both low starting values to give the algorithm more ...

freedom

134 total params = self.M + self.N

135 start params = np.zeros(total params)

136 start params[: self.M] = 0.05

137 start params[self.M :] = 0.05

138 bounds = []

139 for i in range(0, total params):

140 bounds.append((0.001, 0.999))

141 constraint = {"type": "ineq", "fun": lambda x: 0.999 − x[0] − x[1]}

142 res = minimize(

143 self.dcc loglike,

144 (start params),

145 args=(data, D t),

146 constraints=constraint,

147 bounds=bounds,

148 options={"disp": True},

149 )

150 # possible other option to find a global maximum or minimum

151 # res = optimize.shgo(self.dcc loglike, bounds, args = (data, D t), ...

options={'disp':True})

152 par dcc = res.x

153 return par garch n, par dcc, D t

154

155 def dcc garch scenarios(self, data: pd.DataFrame, ndays: int, npaths: int) −> Any:
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156 """Generate scenarios for universe."""

157 data = np.log(np.array(data) + 1) # set to log returns

158 mean n = data.mean(axis=0)

159 self.mean = mean n

160 demean data = data − mean n

161 demean data = pd.DataFrame(demean data)

162

163 par garch, par dcc, D t = self.dcc fit(demean data)

164

165 self.par garch = par garch

166 self.par dcc = par dcc

167 print(par garch, par dcc)

168

169 all log returns = np.zeros((npaths, ndays, self.n))

170 for s in range(npaths):

171 all log returns[s] = self.dcc garch predict(par garch, par dcc, D t, ...

demean data, ndays)

172

173 all paths, all log returnsT = self.cumulative returns(all log returns, ndays, npaths)

174 all returns = np.exp(all log returnsT) − 1

175

176 return all log returnsT, all returns, all paths

177

178 def dcc garch predict(

179 self,

180 par garch: Any,

181 par dcc: Any,

182 D t: Any,

183 demean data: pd.DataFrame,

184 ndays: int,

185 ) −> Any:

186 """Predict the future return scenarios."""

187 a = par dcc[: self.M]

188 b = par dcc[self.M :]

189

190 lag = max(self.M, self.N)

191

192 data update = np.array(demean data)

193 Dt1 = D t

194 Q bar update = self.Q bar

195 Qt update = self.Q tn

196 et update = self.et

197 mean n1 = self.mean
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198

199 returns = np.zeros((ndays, self.n))

200

201 for k in range(ndays):

202 # step 1: garch prediction => D t+1

203 ht1 = np.zeros(self.n)

204

205 for i in range(self.n):

206

207 alpha0 = par garch[i][0]

208 alpha = par garch[i][1 : self.P + 1]

209 beta = par garch[i][self.P + 1 :]

210

211 if self.P == 1:

212 var alph = alpha * data update[−1, i] ** 2

213 if self.Q == 1:

214 var bet = beta * Dt1[−1][i]

215 else:

216 var alph = np.dot(alpha, data update[−1 − self.P : −1, i] ** 2)

217 var bet = np.dot(beta, Dt1[−1 − self.Q : −1, i])

218

219 ht1[i] = alpha0 + var alph + var bet

220 Dt1 = np.append(Dt1, [ht1], axis=0)

221

222 # step 2: dcc prediction => R t+1

223 if lag == 1:

224 et i = et update[:, −1].flatten().reshape((self.n, 1))

225 Qt1 = (1.0 − a − b) * Q bar update + a * np.matmul(et i, et i.T) + b * ...

Qt update[−1]

226

227 else:

228 a sum = np.zeros((self.n, self.n))

229 b sum = np.zeros((self.n, self.n))

230

231 if self.M == 1:

232 a sum = a * np.matmul(

233 et update[:, −1].reshape((self.n, 1)),

234 np.transpose(et update[:, −1].reshape((self.n, 1))),

235 )

236 if self.N == 1:

237 b sum = b * Qt update[−1]

238 else:

239 for m in range(1, self.M):
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240 a sum = a sum + a[m − 1] * np.matmul(

241 et update[:, −1 − m].reshape((self.n, 1)),

242 np.transpose(et update[:, −1 − m].reshape((self.n, 1))),

243 )

244 for order in range(1, self.N):

245 b sum = b sum + b[order − 1] * Qt update[−order]

246

247 Qt1 = (1 − np.sum(a) − np.sum(b)) * self.Q bar + a sum + b sum

248

249 Q star = np.diag(np.sqrt(np.diagonal(Qt1)))

250 Rt1 = np.matmul(np.matmul(np.linalg.inv(Q star), Qt1), np.linalg.inv(Q star))

251

252 # step 3: return calculation => at1 = H t+1 * z t+1

253

254 Ht1 = np.matmul(np.diag(Dt1[−1]), np.matmul(Rt1, np.diag(Dt1[−1])))

255 zt1 = np.random.default rng().normal(0, 1, size=(self.n, 1))

256

257 at1 = np.matmul(np.sqrt(Ht1), zt1)

258 at1 = at1.flatten()

259

260 # calculate mean t+k

261 mean n1 = (mean n1 * (self.T + k) + at1 + mean n1) / (self.T + k + 1)

262 return k = mean n1 + at1

263 returns[k] = return k

264

265 # step 4: update of relevant data

266 data update = np.append(data update, [at1], axis=0)

267 et1 = np.matmul(np.linalg.inv(np.diag(Dt1[−1])), np.transpose(data update[−1, :]))

268 et1 = et1.reshape((self.n, 1))

269 et update = np.append(et update, et1, axis=1)

270 # Q bar update = (Q bar update*(len(data update)−1) + ...

np.matmul(et1,et1.T))/(self.T+1)

271 Qt update = np.append(Qt update, [Qt1], axis=0)

272

273 return returns

274

275 def cumulative returns(self, all returns: np.array, ndays: int, scenarios: int) −> Any:

276 """Create paths instead of daily returns."""

277 real returns = np.exp(all returns)

278 paths = np.ones((scenarios, self.n, ndays + 1))

279 log returns = np.ones((scenarios, self.n, ndays))

280 for s in range(scenarios):

281 for k in range(1, ndays + 1):

50



282 for i in range(self.n):

283 paths[s][i][k] = real returns[s][k − 1][i]

284 log returns[s][i][k − 1] = all returns[s][k − 1][i]

285 paths[s] = np.cumprod(paths[s], axis=1)

286 return paths, log returns

287

288 def visualize(

289 self,

290 paths per asset: np.array,

291 number of assets: int,

292 number of scenarios: int,

293 number of days: int,

294 ) −> None:

295 """Visualize the simulated returns."""

296 days = list(range(number of days))

297 fig, ax = plt.subplots(figsize=(14, 7))

298 for i in range(number of assets):

299 for s in range(number of scenarios):

300 ax.plot(days, paths per asset[i][s], linewidth=2)

301 ax.set xlabel("Time [Days]", fontsize=14)

302 ax.set ylabel("Cummulative Return [/]", fontsize=14)

303 ax.set xlim(0, 19)

304 ax.tick params(axis="both", which="major", labelsize=14)

A.2 Block Bootstrap

1 class MovingBlockBootstrap:

2 """Class that generates scenarios with Moving Block Bootstrap Method."""

3

4 def init (

5 self, block size: int, overlap: int, data: pd.DataFrame, scenarios: int, ndays: int

6 ) −> None:

7 self.block size = block size

8 self.overlap = overlap

9 self.scenarios = scenarios

10 self.ndays = ndays

11 self.data = data

12

13 def block bootstrap(self) −> Any:

14 """Create new scenarios by block bootstrapping the original sample."""

15 # Otherwise the algorithm cannot work properly
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16 assert self.overlap < self.block size

17 max index = math.floor(len(self.data) / (self.block size − self.overlap))

18 num blocks = math.ceil(self.ndays / self.block size)

19 all returns = np.zeros((self.scenarios, self.ndays, len(self.data.columns)))

20 for s in range(self.scenarios):

21 indices: List[int] = []

22

23 while len(indices) < num blocks:

24 index = random.randrange(max index − 1)

25 if index not in indices:

26 indices.append(index)

27

28 for i in range(len(indices)):

29 if i == 0:

30 returns = self.data.iloc[

31 (self.block size − self.overlap)

32 * indices[i] : (self.block size − self.overlap)

33 * indices[i]

34 + self.block size,

35 :,

36 ]

37 else:

38 data = self.data.iloc[

39 (self.block size − self.overlap)

40 * indices[i] : (self.block size − self.overlap)

41 * indices[i]

42 + self.block size,

43 :,

44 ]

45 returns = returns.append(data)

46 all returns[s] = returns.iloc[: self.ndays, :]

47 paths, log returns = self.paths(all returns)

48 return log returns, all returns, paths

49

50 def paths(self, all returns: np.array) −> Any:

51 """Create paths out of returns."""

52 N assets = len(self.data.columns)

53 paths = np.ones((self.scenarios, N assets, self.ndays + 1))

54 log returns = np.ones((self.scenarios, N assets, self.ndays))

55 for n in range((len(self.data.columns))):

56 for s in range(self.scenarios):

57 for k in range(self.ndays):

58 paths[s][n][k + 1] = all returns[s][k][n] + 1
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59 log returns[s][n][k] = np.log(all returns[s][k][n] + 1)

60 paths[s][n] = np.cumprod(paths[s][n])

61 return paths, log returns

62

63 def visualize(

64 self,

65 returns per asset: np.array,

66 number of assets: int,

67 number of scenarios: int,

68 number of days: int,

69 ) −> None:

70 """Visualize the simulated returns."""

71 days = list(range(number of days))

72 fig, ax = plt.subplots(figsize=(14, 7))

73 for i in range(number of assets):

74 for s in range(number of scenarios):

75 ax.plot(days, returns per asset[i][s])

76 ax.set xlabel("Time [Days]", fontsize=14)

77 ax.set ylabel("Cummulative Return [/]", fontsize=14)

78 ax.set xlim(0, 19)

79 ax.tick params(axis="both", which="major", labelsize=14)

A.3 Variational Autoencoder

1 class CVAE(object):

2 """Conditional Variational Auto Encoder (CVAE)."""

3

4 def init (self, n latent, n hidden=1000, alpha=0.2):

5 self.n latent = n latent

6 self.n hidden = n hidden

7 self.alpha = alpha

8

9 def lrelu(self, x, alpha=0.3):

10 return tf.maximum(x, tf.multiply(x, alpha))

11

12 def encoder(self, X in, cond, input dim):

13 with tf.variable scope("encoder", reuse=None):

14 x = tf.concat([X in, cond], axis=2)

15 x = tf.layers.flatten(x)

16 x = tf.layers.dense(x, units=self.n hidden, activation=self.lrelu)

17 mn = tf.layers.dense(x, units=self.n latent, activation=self.lrelu)
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18 sd = tf.layers.dense(x, units=self.n latent, activation=self.lrelu)

19 epsilon = tf.random normal(tf.shape(mn), 0, 1, dtype=tf.float32, seed = 580)

20 z = mn + sd*epsilon

21 return z, mn, sd

22

23 def decoder(self, sampled z, cond, input dim):

24 with tf.variable scope("decoder", reuse=None):

25 cond = tf.layers.flatten(cond)

26 x = tf.concat([sampled z, cond], axis=1)

27 x = tf.layers.dense(x, units=self.n hidden, activation=self.lrelu)

28 x = tf.layers.dense(x, units=input dim[0]*input dim[1], activation=tf.nn.sigmoid)

29 # we have to make sure that a reshape is possible.

30 x = tf.reshape(x, shape=[−1, input dim[0], input dim[1]])

31

32 return x

33

34 def train(self, data, data cond, n epochs=10000, learning rate=0.0005,

35 show progress=True, beta=0):

36

37 data = utils.as float array(data)

38 data cond = utils.as float array(data cond)

39

40 if len(data cond.shape) == 1:

41 data cond = data cond.reshape(−1, 1)

42

43 assert data.max() ≤ 1. and data.min() ≥0., \

44 "All features of the dataset must be between 0 and 1."

45

46 tf.reset default graph()

47

48 input dim = data[1].shape

49 self.input dim = input dim

50 dim cond = data cond[1].shape

51

52 X in = tf.placeholder(dtype=tf.float32, shape=[None, input dim[0], input dim[1]], ...

name="X")

53 self.cond = tf.placeholder(dtype=tf.float32, shape=[None, dim cond[0], ...

dim cond[1]], name="c")

54 Y = tf.placeholder(dtype=tf.float32, shape=[None, input dim[0], input dim[1]], ...

name="Y")

55

56 Y flat = Y

57

54



58

59 self.sampled, mn, sd = self.encoder(X in, self.cond, input dim=input dim)

60 self.dec = self.decoder(self.sampled, self.cond, input dim=input dim)

61 unreshaped = tf.reshape(self.dec, [−1, input dim[0], input dim[1]])

62

63 D reshape = tf.reshape(Y flat, [−1,input dim[1]])

64 G reshape = tf.reshape(unreshaped, [−1, input dim[1]])

65 co drawdown = self.co dd(G reshape, D reshape)

66 co drawdown = tf.reduce sum(tf.reshape(co drawdown, [−1,input dim[0]]),1)

67

68 decoded loss1 = tf.reduce sum(tf.squared difference(unreshaped, Y flat),1)

69 decoded loss = tf.reduce sum(decoded loss1,1) + beta * co drawdown

70 latent loss = −0.5 * tf.reduce sum(1. + sd − tf.square(mn) − tf.exp(sd),1)

71 self.loss = tf.reduce mean((1 − self.alpha) * decoded loss + self.alpha * latent loss)

72

73 optimizer = tf.train.AdamOptimizer(learning rate).minimize(self.loss)

74 self.sess = tf.Session()

75 self.sess.run(tf.global variables initializer())

76

77

78 for i in tqdm(range(n epochs), desc="Training"):

79 self.sess.run(optimizer, feed dict={X in: data, self.cond: data cond, Y: data})

80 if not i % 1000 and show progress:

81 ls, d = self.sess.run([self.loss, self.dec], feed dict={X in: data, ...

self.cond: data cond, Y: data})

82 print(i, ls)

83

84 def generate(self, cond, seed, n samples=None):

85 cond = utils.as float array(cond)

86

87 if n samples is not None:

88 np.random.seed(seed)

89 randoms = np.random.normal(0, 1, size=(n samples, self.n latent))

90 cond = [list(cond)] * n samples

91 else:

92 np.random.seed(seed)

93 randoms = np.random.normal(0, 1, size=(1, self.n latent))

94 cond = [list(cond)]

95

96 samples = self.sess.run(self.dec, feed dict={self.sampled: randoms, self.cond: cond})

97

98 if n samples is None:

99 return samples[0]
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100

101 return samples

102

103

104 def co dd(self, ts1, ts2):

105 ts diff = 0.5 * ts1 + 0.5 * ts2

106 co dd = tf.reduce mean((0.5 * (tf run max(ts1) − ts1)) + (0.5 * (tf run max(ts2) − ...

ts2)), 1) / tf.reduce mean(tf run max(ts diff) − ts diff)

107 return co dd

108

109

110 def tf maintain loop(x, loop counter):

111 return tf.not equal(loop counter, 0)

112

113 def tf run max loop(x, loop counter):

114 loop counter −= 1

115 y = tf.concat(([x[0]], x[:−1]), axis=0)

116 z = tf.maximum(x, y)

117 return z, loop counter

118

119 def tf run max(ts):

120 cumulative max, = tf.while loop(cond=tf maintain loop, body=tf run max loop, ...

loop vars=(ts, ts.shape[1]))

121 return cumulative max

122

123 class MarketGenerator:

124 def init (self, ticker, start=pd.Timestamp('2017−01−01'),

125 end= pd.Timestamp('2021−01−01'), freq="BM", n latent=20, n hidden=500):

126

127 self.ticker = ticker

128 self.start = start

129 self.end = end

130 self.freq = freq

131

132 self. load data()

133 self. build dataset()

134 self.generator = CVAE(n latent, n hidden, alpha=0.03)

135

136 def load data(self):

137 dat = Data(self.ticker, self.start, self.end)

138 data = dat.get data()

139 self.data = data

140
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141 self.windows = []

142 for , window in self.data.resample(self.freq):

143 values = window.values

144 path = []

145 for i in range(len(self.data.columns)):

146 values i = []

147 for k in range(len(values)):

148 values i.append(values[k,i])

149 path i = leadlag(values i)

150 path.append(path i)

151 self.windows.append(path)

152

153 def build dataset(self):

154 orig logsig = []

155 for portfolio in self.windows:

156 orig logsig i = np.array([np.diff(np.log(path i[::2, 1])) for path i in ...

portfolio])

157 orig logsig.append(orig logsig i)

158 self.orig logsig = [p for p in orig logsig if len(p[0]) ≥ 4]

159 steps = np.inf

160 for port in range(len(self.orig logsig)):

161 minn = min(map(len, self.orig logsig[port]))

162 if minn < steps:

163 steps = minn

164 self.scaler = MinMaxScaler(feature range=(0.00001, 0.99999))

165 logsig = np.zeros((len(orig logsig), len(self.data.columns), steps))

166 for port in range(len(self.orig logsig)):

167 self.orig logsig[port] = np.array([val[:steps] for val in self.orig logsig[port]])

168 logsig i = self.scaler.fit transform(self.orig logsig[port])

169 logsig[port] = logsig i

170

171 self.logsigs = logsig[1:]

172 self.conditions = logsig[:−1]

173

174 def train(self, n epochs=10000, beta=0):

175 self.generator.train(self.logsigs, self.conditions, n epochs=n epochs, beta=0)

176

177 def generate(self, logsig, seed, n samples=None, normalised=False):

178 generated = self.generator.generate(logsig, seed, n samples=n samples)

179 if normalised:

180 return generated

181

182 if n samples is None:
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183 return self.scaler.inverse transform(generated)

184

185 return self.scaler.inverse transform(generated)

A.4 Stylized Facts

1 class StylizedFacts:

2 """Class that tests 6 stylized facts for all assets in the asset universe."""

3

4 def init (self, data: pd.DataFrame):

5 self.data = data

6

7 def leverage effect(self, data: pd.DataFrame, lag: int, alpha: float) −> Any:

8 """Calculate correlation delayed squared returns and returns."""

9 datax = data

10 datay = abs(datax) ** 2

11 corrs = []

12 for i in range(lag):

13 corrs.append(datax.corr(datay.shift(−i)))

14 np.array(corrs).shape

15 nobs = len(corrs)

16 varacf = np.ones like(corrs) / nobs

17 varacf[0] = 0

18 varacf[1] = 1.0 / nobs

19 varacf[2:] *= 1 + 2 * np.cumsum(np.power(corrs[1:−1], 2))

20 interval = stats.norm.ppf(1 − (1 − alpha) / 2.0) * np.sqrt(varacf)

21 confint = np.array(lzip(corrs − interval, corrs + interval))

22

23 return corrs, confint

24

25 def leverage effect plot(self, data: pd.DataFrame, lag: int, alpha: float) −> None:

26 """Return graph with leverage correlaltions for different lags."""

27 corrs, confint = self.leverage effect(data, lag, alpha)

28 lags = np.array(list(range(lag)))

29 fig, ax = plt.subplots(figsize=(14, 7))

30 ax.margins(0.05)

31 ax.vlines(lags[1:], [0], corrs[1:])

32 ax.axhline()

33 ax.plot(lags[1:], corrs[1:], "o")

34 ax.set title("leverage effect", fontsize=14)

35
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36 lags = lags[1:]

37 confint = confint[1:]

38 corrs = corrs[1:]

39 lags = lags.astype(float)

40 lags[0] −= 0.5

41 lags[−1] += 0.5

42 ax.fill between(lags, confint[:, 0] − corrs, confint[:, 1] − corrs, alpha=0.25)

43

44 def absence of linear autocorrelations(self) −> float:

45 """Verify no autocorrelation in daily returns."""

46 # Test no autocorrelation in returns

47 data = self.data

48 lags = 5

49 alpha = 0.01

50 # assert len(data)/lags > lags # otherwise the autocorrelation calculations might ...

be off

51 succes = np.zeros(len(data.columns))

52 for i in range(len(data.columns)):

53 # determine autocorrelation and confidence interval

54 ACF, confint = acf(data.iloc[:, i], nlags=lags, alpha=alpha, fft=False)

55 score = 0

56 for auto i in range(1, len(ACF)):

57 if (

58 ACF[auto i] > confint[auto i][0] − ACF[auto i]

59 and ACF[auto i] < confint[auto i][1] − ACF[auto i]

60 ):

61 score += 1

62 if score / (lags) ≥ 0.80:

63 succes[i] = 1

64 score = np.sum(succes) / len(succes)

65 return score

66

67 def nonlinear autocorrelation in returns(self) −> float:

68 """Verify slow deacy of autocorrelation in absolute daily returns."""

69 # Test nonlinear autocorrelation in returns: ln(1+x**2) # more expressed in ...

absolute values but can be any function basically.

70 data = self.data

71 lags = 3

72 alpha = 0.05

73 nonlin data = np.log(1 + np.array(data) ** 2)

74 nonlin data = pd.DataFrame(nonlin data)

75 succes = np.zeros(len(data.columns))

76 for i in range(len(data.columns)):
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77 # determine autocorrelation and confidence interval

78 ACF, confint = acf(nonlin data.iloc[:, i], nlags=lags, alpha=alpha, fft=False)

79 score = 0

80 for auto i in range(1, len(ACF)):

81 if (

82 ACF[auto i] > confint[auto i][1] − ACF[auto i]

83 ): # put in slowly dying measure as well?

84 score += 1

85 if score / lags ≥ 0.65:

86 succes[i] = 1

87 score = np.sum(succes) / len(succes)

88 return score

89

90 def heavy tails(self) −> Any:

91 """Verify heavy tails in financial data."""

92 # Test kurtosis:

93 data = self.data

94 succes = np.zeros(len(data.columns))

95 for i in range(len(data.columns)):

96 # Determine kurtosis value. Pandas uses Fisher's value so kurtosis of normal ...

dist == 0, we add three for the standard defintion

97 kurtos = data.iloc[:, i].kurtosis()

98 if kurtos > 0:

99 succes[i] = 1

100 score = np.sum(succes) / len(succes)

101 return score

102

103 def gain loss asymmetry(self) −> Any:

104 """Verify a gain loss asymmetry in financial data."""

105 # Test skewnes:

106 data = self.data

107 succes = np.zeros(len(data.columns))

108 for i in range(len(data.columns)):

109 skewn = data.iloc[:, i].skew()

110 if skewn < 0:

111 succes[i] = 1

112 score = np.sum(succes) / len(succes)

113 return score

114

115 def volatility clustering(self) −> float:

116 """Verify volatility clustering in financial data."""

117 # Test volatility clustering in returns

118 data = self.data
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119 lags = 3

120 alpha = 0.05

121 succes = np.zeros(len(data.columns))

122 for i in range(len(data.columns)):

123 # determine autocorrelation and confidence interval

124 ACF, confint = acf(abs(data.iloc[:, i] ** 2), nlags=lags, alpha=alpha, fft=False)

125 score = 0

126 for auto i in range(1, len(ACF)):

127 if ACF[auto i] > confint[auto i][1] − ACF[auto i]:

128 score += 1

129 if score / lags ≥ 0.65:

130 succes[i] = 1

131 score = np.sum(succes) / len(succes)

132 return score

133

134 def leverage effect fact(self) −> float:

135 """Verify leverage effect in each separate time series."""

136 data = self.data

137 lag = 10

138 alpha = 0.05

139 succes = np.zeros(len(data.columns))

140 for i in range(len(data.columns)):

141 lev, confint = self.leverage effect(data.iloc[:, i], lag, alpha)

142 score = 0

143 for k in range(len(lev[1:])):

144 if lev[k] < (confint[k, 0] − lev[k]):

145 score += 1

146 if score / lag ≥ 0.50:

147 succes[i] = 1

148 score = np.sum(succes) / len(succes)

149 return score

150

151 def get style score(self) −> pd.DataFrame:

152 """Return score chart of stylized facts test."""

153 style score = {}

154 style score[

155 "No linear autocorrelation in returns"

156 ] = self.absence of linear autocorrelations()

157 style score[

158 "Nonlinear autocorrelation in returns"

159 ] = self.nonlinear autocorrelation in returns()

160 style score["Heavy tails distribution"] = self.heavy tails()

161 style score["Gain loss assymmetry distribution"] = self.gain loss asymmetry()
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162 style score["volatility clustering in returns"] = self.volatility clustering()

163 style score["leverage effect in returns"] = self.leverage effect fact()

164

165 style score table = pd.DataFrame.from dict(style score, orient="index")

166

167 return style score table

B Theory

Section that gives additional explanations on some theoretic concepts not explained in the core text.

B.1 Signatures

A signature is defined as a transformation of the path space. A transformation that anticipates typical

properties of the data and irregularities of sampling. A transformation that is capable of describing the

interaction of complex oscillatory systems. A signature of path X : [a, b]− >d denoted as S(X)a,b is a

collection of all iterated integrals of X. An iterated integral for path X : [a, b]− >d is defined as follows.

Denote the coordinate paths by (X1
t , ..., X

d
t ) where each Xi : [a, b]− >d is a real-valued path. For any single

index i ∈ {1, ..., d} we let equation 45 define quantity S(X)ia,t, which is the increment of the i-th coordinate

of the path at time t ∈ [a, b]. Next, for every pair of coordinates i, j ∈ {1, ..., d}, the double integral S(X)i,ja,t
is defined by equation 46. Likewise, for any triplet of coordinates i, j, k ∈ {1, ..., d}, the triple-integrated is

defined by equation 47. This can be continued recursively so that for any n indexes the n-fold integral of X

is defined by equation 48.

S(X)ia,t =
∫
a<s<t

dXi
s = Xi

t −Xi
0 (45)

S(X)a, ti,j =
∫
a<s<t

S(X)a, sidXj
s =

∫
a<r<s<t

dXi
rdX

j
s (46)

S(X)a, ti,j,k =
∫
a<s<t

S(X)a, si,jdXk
s =

∫
a<q<r<s<t

dXi
qdX

j
rdX

k
s (47)

S(X)a, ti1,...,in =
∫
a<s<t

S(X)i1,...,in−1
a,s dXin

s (48)

With the iterated integrals of X a formal definition for the signature of path X can be given as the collection

of all the iterated integrals of X. That is, S(X)a,t is defined as a sequence of real numbers by equation 49.

S(X)a,b =
(

1, S(X)1
a,b, . . . , S(X)da,b, S(X)1,1

a,b, S(X)1,2
a,b, . . .

)
(49)

With this definition we can show that the signature of a path is a finite sequence of numbers that is able to

describe set path. The signature technique allows to translate a path from the infinite dimensional and non-
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locally compact pathspace C0([0, 1],d to a finite dimensional space where a sequence of numbers describes

the feature of a path. (Chevyrev and Oberhauser, 2018) takes it even a step further by normalizing the

signature moments in order to be able to describe the full distribution where the paths originate from.

C Figures and Tables

Additional figures and tables of data and results section.

C.1 Asset Universe

Table 13: Annualized return and annualized standard deviation of the constituents of the asset universe.

Constituents Annualized return Annualized std. dv.

DEUTSCHE BOERSE (XET) 0.193942 0.238111

INDITEX 0.110377 0.260562

ASML HOLDING 0.307927 0.286868

FLUTTER (DUB) ENTERTAINMENT 0.210059 0.327861

ENEL 0.220826 0.261580

DEUTSCHE POST (XET) 0.151716 0.245130

INFINEON TECHS. (XET) 0.256679 0.341433

AIRBUS 0.145112 0.367288

ANHEUSER-BUSCH INBEV 0.083602 0.281083

BNP PARIBAS 0.094237 0.324451

ENGIE 0.098907 0.254882

ING GROEP 0.091791 0.341695

DAIMLER (XET) 0.111802 0.313819

AMADEUS IT GROUP 0.162182 0.294035

BANCO SANTANDER 0.059009 0.346326

VINCI 0.161297 0.277433

KONE ’B’ 0.184714 0.222930

ALLIANZ (XET) 0.163300 0.244253

BASF (XET) 0.102241 0.258750

BAYER (XET) 0.061599 0.285563

BMW (XET) 0.103811 0.276420

SIEMENS (XET) 0.137952 0.248039

ENI 0.074323 0.289188

MUENCHENER RUCK. (XET) 0.160634 0.240483

ADIDAS (XET) 0.223801 0.286854
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DEUTSCHE TELEKOM (XET) 0.132699 0.217079

VOLKSWAGEN PREF. (XET) 0.084532 0.348711

SAP (XET) 0.151765 0.245918

VONOVIA (XET) 0.252296 0.223265

CRH 0.166114 0.301647

TOTALENERGIES 0.106257 0.284408

DANONE 0.111955 0.200381

KONINKLIJKE AHOLD DELHAIZE 0.168177 0.214563

LVMH 0.269063 0.264517

VIVENDI 0.152451 0.234147

L AIR LQE.SC.ANYME. POUR L ETUDE ET L EPXTN. 0.161970 0.209715

L’OREAL 0.192269 0.210567

PERNOD-RICARD 0.163860 0.203475

KERING 0.266813 0.297525

SAFRAN 0.183617 0.342829

INTESA SANPAOLO 0.127502 0.349019

ADYEN 0.269371 0.248170

PHILIPS ELTN.KONINKLIJKE 0.155973 0.234700

ESSILORLUXOTTICA 0.145379 0.241283

AXA 0.118504 0.283129

LINDE (XET) 0.159004 0.192932

PROSUS 0.127394 0.160012

SANOFI 0.117123 0.218967

SCHNEIDER ELECTRIC 0.171858 0.265480

IBERDROLA 0.222586 0.204038

C.2 GARCH estimated values

Table 14: Overview of the estimated values for α0, α, and β for each asset in the considered universe.

Asset α0 α β

OERSE (XET) 2.00861680e-05 1.21683289e-01 7.81371826e-01

INDITEX 4.95888727e-05 4.70508384e-03 7.96721333e-01

ASML HOLDING 8.02840616e-06 2.02741776e-02 9.52137534e-01

FLUTTER (DUB) ENTERTAINMENT 3.38858776e-05 1.11404290e-01 8.10439842e-01

ENEL 1.29214250e-05 1.20561065e-01 8.35631081e-01

DEUTSCHE POST (XET) 7.25034156e-06 6.03007219e-02 9.06444578e-01

64



INFINEON TECHS. (XET) 4.25833711e-05 6.61363875e-02 8.42262518e-01

AIRBUS 1.77262346e-05 1.21495215e-01 8.35849695e-01

ANHEUSER-BUSCH INBEV 1.05904167e-05 9.02344515e-02 8.73157364e-01

BNP PARIBAS 9.04161291e-06 1.25598912e-01 8.57501180e-01

ENGIE 7.14573646e-05 6.97478621e-03 6.82018708e-01

ING GROEP 9.93909209e-06 1.18513030e-01 8.64461178e-01

DAIMLER (XET) 3.36926920e-06 8.57794036e-02 9.07396331e-01

AMADEUS IT GROUP 5.74580281e-06 9.27288082e-02 8.90831244e-01

BANCO SANTANDER 1.62392093e-05 1.48983505e-01 8.26213223e-01

VINCI 8.29884253e-06 1.23718130e-01 8.50111314e-01

KONE ’B’ 1.54431587e-05 1.27328129e-01 8.18273041e-01

ALLIANZ (XET) 3.85186915e-05 2.49866885e-01 5.52966624e-01

BASF (XET) 4.88877474e-05 3.00789145e-02 8.26661646e-01

BAYER (XET) 1.00500484e-05 4.33185415e-02 9.20071800e-01

BMW (XET) 4.67576444e-06 6.40324007e-02 9.19512150e-01

SIEMENS (XET) 1.35340445e-05 7.05262433e-02 8.69841689e-01

ENI 2.92526241e-06 1.06280677e-01 8.92995660e-01

MUENCHENER RUCK. (XET) 8.51294805e-06 1.29566257e-01 8.27605406e-01

ADIDAS (XET) 5.31556912e-05 7.64382489e-02 7.56287669e-01

DEUTSCHE TELEKOM (XET) 4.03134591e-06 7.98130353e-02 8.98090560e-01

VOLKSWAGEN PREF. (XET) 8.03337814e-06 9.97741250e-02 8.89824034e-01

SAP (XET) 3.19171494e-06 7.16701023e-02 9.27980918e-01

VONOVIA (XET) 5.33475311e-06 7.94677599e-02 8.94790638e-01

CRH 2.08893652e-05 1.05604482e-01 8.29705988e-01

TOTALENERGIES 3.88348956e-06 1.18515222e-01 8.76254937e-01

DANONE 7.31064835e-06 2.15543938e-03 9.51874186e-01

KONINKLIJKE AHOLD DELHAIZE 4.21941969e-05 1.54919513e-01 6.11448528e-01

LVMH 7.13938734e-06 6.19268344e-02 9.12454235e-01

VIVENDI 2.01717255e-05 1.17931383e-01 7.88899860e-01

L AIR LQE.SC.ANYME. 1.31828145e-05 1.44142411e-01 7.83343220e-01

L’OREAL 6.11013396e-06 7.42579380e-02 8.98736246e-01

PERNOD-RICARD 2.90936950e-06 6.34077531e-02 9.19564615e-01

KERING 2.13029226e-05 8.43066951e-02 8.55798107e-01

SAFRAN 1.03466956e-05 1.27841972e-01 8.43465382e-01

INTESA SANPAOLO 1.00711741e-05 1.69341782e-01 8.28452790e-01

ADYEN 3.41219908e-05 1.06364564e-01 8.02599570e-01

PHILIPS ELTN.KONINKLIJKE 8.78917015e-05 8.63093302e-03 5.84368652e-01
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ESSILORLUXOTTICA 9.85576452e-06 6.04091077e-02 8.94453073e-01

AXA 1.75407651e-05 2.34554514e-01 7.27764119e-01

LINDE (XET) 1.00000000e-06 9.99900000e-01 4.49271320e-01

PROSUS 1.00000000e-06 9.99900000e-01 3.37975987e-01

SANOFI 5.16197578e-06 6.20560410e-02 9.12410222e-01

SCHNEIDER ELECTRIC 1.31332430e-05 1.07102568e-01 8.46905239e-01

IBERDROLA 4.24047470e-06 3.26262493e-03 9.67890130e-01
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