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Abstract

This primer introduces signatures, a graded summary of path structured data
or streams, in a more introductory way. Signatures arose from the geometry
of K.T. Chen and the algebra of Y.C. Young and have played a pivotal
role in T. Lyons’ theory of rough paths [1]. Signatures are non-parametric
transformations of paths that preserve nice geometrical features and have
properties that allow for a parsimonious encoding or representation of paths
in a machine learning context.
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1. Context1

1.1. Generation of realistic drawdown samples2

Figure 1: Path embeddings in a broader optimization framework
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Figure 1 sketches an overview of the role of path representation in a3

machine learning-based drawdown optimization context. Before we introduce4

paths more formally below, let us discuss where paths live in such a problem.5

Firstly, there is the physical domain Ω in which the input data is structured.6

Think in a financial context about market data, e.g. the timeseries of the7

T last historical prices for N financial instruments. These can be seen as8

paths in RN+1 with N evolutions of asset prices and the evolution of time9

over [0,T]. However, when we want to optimize for some features of these10

timeseries (e.g. minimize drawdowns, see below), it is not generally (and11

typically not) the case that the signal lives in the physical domain. We need12

to represent the path in a domain that allows to find traces of the processes13

that generate these features, called a signal domain.14

In line with the upcoming literature on geometric learning [2], this rep-15

resentation step is in the above figure split up according to two principles:16

multi-scale representation and symmetry. The first principle implies that17

representation of different granularities of the input grid (finer and more18

coarse-grained time intervals) can help the learning model to find traces of19

these processes. The second principle means that Ω is a rich domain with hi-20

erarchical and symmetrical relationships that can be exploited. For instance,21

when two instruments almost perfectly behave in accordance to a third (what-22

ever your similarity metric), the T x 3 observations can be reduced to a T x23

1 series and 2 similarity metrics that provide an inverse mapping. The result24

of the representation step is a so-called vector embedding, which represents25

the complex input paths as a collection of real-valued vectors that will serve26

as training samples to the learning pipeline. For this embedding we propose27

signatures below, and discuss the reasons for doing so.28

The learning pipeline in our later applications is a (neural) generative29

model, such as a Generative Adversarial Network (GAN), a Restricted Boltz-30

mann Machine (RBM) or a Variational Autoencoder (VAE). These learning31

models represent the relationships between the vectors in a parsimonious way32

according to some learning objective. The resulting (latent) representation33

can then be used to generate new samples of vectors, which can be inversely34

transformed into genuinely new paths that are statistically indistinguishable35

from the original samples, according to some similarity metric. This is the36

general idea but not the focal point of this primer.37

Next, these samples are fed to a portfolio optimizer. Our application will38

try to find a set of portfolio weights w that minimize the expected draw-39

down as defined as the expected deviation of the portfolio path wΠt from40

2



a monotonic growing path mt, or more specifically our optimizer tries to41

minimize42

43

minw E(ξ(w))
s.t. ξ = mt − wΠt

mt ≥ mt−1

wIN = 1

44

(1)

It is immediately clear that the path structure of Π is critical because45

the drawdown series ξt, t ∈ [0, Ts] is dependent on the local maxima mt.46

Compared to static return-based optimizers (e.g. mean-variance quadratic47

utility frameworks), drawdown optimizers require a dynamic functional ξt,48

first formally introduced by Chekhlov et al. [3] (Definition 3.1):49

ξ = (ξ1, ξ2, ..., ξT ), ξt = max
tk<t

(Ptk)− Pt (2)

with Pt in our notation being equivalent to wΠi,t, or the timeseries of portfolio50

values and i ∈ ns a particular scenario. The latter is central in our notion of51

expected drawdown function E(ξ(w)).52

1.2. Paths53

In section 1 we have introduced the kind of paths we are interested in54

and why the path structure is especially important in our application. In55

this section we more formally define what we mean by a path.56

A path is one of the most basic elements in financial theory, but it is57

usually not well thought of as a path, i.e. transformations like calculating58

returns essentially transform the data from path space to distribution space59

(i.e. a profit-and-loss distribution or P&L). Although econometrics focuses60

on sequences of returns and its variation, it models distributions rather than61

paths. The same holds for risk measures such as VaR, CVaR - both cut-offs62

of the P&L distribution - and portfolio optimization tools such as classical63

mean-variance optimization and risk-based methods such as popular min vol,64

risk parity and maximum diversification approaches. Let us thus first start by65

defining a path in general and then make it specific for our context explained66

in 1.67

A path γ in Rd is a continuous map from some interval [a, b] to Rd, written68

as γ : [a, b]→ Rd. We use subscript γt = γ(t) to denote the time as parameter69
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t ∈ [a, b], and usually for convenience we take a = 0, b = T, t ∈ [0, T ]. In70

our examples we will assume that paths are piecewise linear, smooth and71

differentiable, i.e. the path has derivates of all orders over [0,T]1. A path in72

d dimensions can be written as73

γ : [0, T ]→ Rd, γt = {γ1
t , γ

2
t , ..., γ

d
t } (3)

A simple example of such a path in R2 would be the following path γ :74

[0, 5]→ R2, γt = {t, γ2
t } = {{0, 1, 2, 3, 4, 5}, {1, 2, 1, 3 ,2, 5}}.75

Figure 2: Example of a path in R2

1.3. Path integrals76

For a path γ : [0, T ]→ R and a function f : R→ R, the path integral of77

γ against f is defined by78 ∫ T

0

f(γt)dγt =

∫ T

0

f(γt)
dγt
dt

dt =

∫ T

0

f(γt)γ̇tdt (4)

in which context f is called a 1-form. The last integral is the ’usual’ Riemann79

integral. Note that f itself is a real-valued path on [0, T ]. This is a special80

case of the Riemann-Stieltjes integral of one path against another [4].81

In general, one can integrate any two paths on [0, T ], ϕ : [0, T ] → R, γ :82

[0, T ]→ R, against one another:83 ∫ T

0

ϕtdγt =

∫ T

0

ϕtγ̇tdt (5)

1However, the same properties hold for general (rough) paths of bounded variation, see
[4].
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2. Signatures84

2.1. Definition85

Now that we have defined a path in Rd and path integrals, let us consider86

a particular path integral defined for any single index i ∈ {1, 2, ..., d}:87

S(γ)i0,T =

∫ T

0

dγi = γi
T − γi

0 (6)

which is the increment of the path along the dimension i in {1, 2, ..., d}. Now88

for any pair of indexes i, j ∈ {1, 2, ..., d}, let us define:89

S(γ)i,j0,T =

∫ T

0

∫ tj

0

dγidγj (7)

and likewise for triple indices in i, j, k ∈ {1, 2, ..., d}:90

S(γ)i,j,k0,T =

∫ T

0

∫ tj

tk

∫ tk

0

dγidγjdγk (8)

and we can continue for the collection of indices i1, i2, ..., ik ∈ {1, 2, ..., d}:91

S(γ)i1,i2,...,ik0,T =

∫ T

0

...

∫
t2<t1

∫ t1

0

dγi1dγi2 ...dγik (9)

which we call the k-fold iterated integral of γ along {i1, i2, ..., ik}.92

Definition 2.1 (Signature). From [4]: The signature of a path γ : [0, T ]→93

R denoted S(γ)0,T is the collection (infinite series) of all the iterated integrals94

of γ. Formally, S(γ)0,T is the sequence of real numbers95

S(γ)0,T = (1, S(X)10,T , S(X)20,T , ..., S(X)d0,T , S(X)1,10,T , S(X)1,20,T , ...) (10)

where the zeroth term is 1 by convention and the superscript runs along the96

set of multi-indices:97

W = {(i1, i2, ..., ik)|k ≥ 1; i1, i2, ..., ik ∈ {1, 2, ..., d}} (11)

In other words, the signature is the collection of all the iterated integrals98

consisting of any combination of indices in d to any length of combination,99
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Figure 3: Example of a path in R2

hence an infinite series. However, it is important to note that these signa-100

tures are ordered along this length, which is called the order or level of the101

signature.102

We often consider theM -th level truncated signature, defined as the finite103

collection of all terms where the superscript is of max length M:104

SM(γ) = (1, S1(γ), S2(γ), ..., SM(γ)) (12)

where Sk(γ) denotes all the signature terms of order k, e.g.105

S1(γ) = (S(γ)1, S(γ)2, ..., S(γ)d) (13)
106

S2(γ) = (S(γ)1,1, S(γ)1,2, ..., S(γ)d,d) (14)

A very simple example (Figure 2.1) would be the path γ : [0, 2] → R2,107

γt = {γ1
t , γ

2
t } = {t, f(t)} = {t, t2}, which corresponds to a quadratically108

growing path through the origin. Below are the signature terms numerically109

up till M = 2.110

S(γ)10,2 =

∫ 2

0

dγ1 =

∫ 2

0

dt = 2 (15)

111

S(γ)20,2 =

∫ 2

0

dγ2 =

∫ 2

0

2tdt = 4 (16)

112

S(γ)1,10,2 =

∫ 2

0

∫ t2

0

dγ1dγ1 =

∫ 2

0

∫ t2

0

dt1dt2 = 2 (17)

113

S(γ)1,20,2 =

∫ 2

0

∫ t2

0

dγ1dγ2 =

∫ 2

0

∫ t2

0

2t2dt1dt2 = 16/3 (18)
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Figure 4: Levy area (red)

114

S(γ)2,10,2 =

∫ 2

0

∫ t2

0

dγ2dγ1 =

∫ 2

0

∫ t2

0

2t1dt1dt2 = 8/3 (19)

115

S(γ)2,20,2 =

∫ 2

0

∫ t2

0

dγ2dγ2 =

∫ 2

0

∫ t2

0

2t2dt2 = 8 (20)

2.2. Properties of the signature116

2.2.1. Geometric interpretation of the terms117

As we discussed in equation (6) the first order terms are the increments118

of the paths, S(X)1 = 2 over time, and S(X)2 = 4 over the 2nd dimension,119

e.g. the price axis. In a financial context, this would have the interpretation120

of drift.121

The second order terms can be interpreted as a measure for variation (see122

section 2.4). More specifically, the combination of cross-terms measures the123

Levy area L, defined as the area between the chord connecting the first and124

the last point and the path:125

L =
1

2
(S(γ)1,2 − S(γ)2,1) (21)

In the example:126

L =
1

2
(
16

3
− 8

3
) =

4

3
(22)

Given the simplicity of the example, this can be verified through calculating127

the area of the triangle Red + Green in Figure 4 (i.e. half the square of128

the increments 2 ∗ 4/2 = 4) and subtracting the Green area
∫ 2

0
t2dt = 8/3129

resulting in Red - Green = 4/3. Clearly the Levy area measures the deviation130

from the drift over the path.131
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2.2.2. Factorial decay132

One key property of signatures is factorial decay, which makes it a graded133

summary of paths.134

As an analogue to the distributional setting (cf. 1.2) consider the well-135

known principal component analysis (PCA). In PCA we use linear combi-136

nations of the data to decompose it into its components that maximise the137

variance of the data set. It is equivalent to the eigendecomposition of the138

covariance matrix of the data set. A key feature is that we commonly see ex-139

ponential decay or rate decay, namely that the sorted absolute values of the140

eigenvalues of the covariance matrix of Ω : RT×N decay fast enough, i.e. the141

jth largest coefficient |β|j ≤ Aj−a, a ≥ 1/2,∀j and constants a and A do not142

depend on the dimension T. The latter implies that the first N components143

typically already explain a vast part of the shared variance in the data set.144

Informally, this intuition can be applied to paths as well. Lyons [1] shows145

that for paths of bounded variation2 the following similar norm can be im-146

posed on the signature terms (with 1 ≤ i1, ..., in ≤ d):147

||
∫

...

∫
dγi1dγi2 ...dγin|| ≤ ||γ

n
1 ||
n!

(23)

with148

||γ||1 = sup
ti⊂[0,T ]

∑
i

|γti+1
− γti | (24)

where we take the supremum over all partitions of [0,T].149

This theorem proven in [1] guarantees that higher-order terms of the150

signature have factorial decay, i.e. that the order of signatures imply a graded151

summary of the path, from global to more local characteristics of the path.152

This implies that the truncated signature for increasing orders throws away153

less and less information, similar to a low-rank approximation in PCA.154

2.2.3. Shuffle product155

Another key property of paths is that it linearizes the complex non-linear156

dynamics of high-dimensional oscillatory systems, such as financial time-157

series.158

2γ : [0, T ]→ R is of bounded variation if all changes
∑

i |γti+1
−γti | are bounded (finite)

for all partitions 0 ≤ t0 ≤ t1 ≤ ... ≤ T
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One result that makes this more specific is the work of Ree [5] about159

the algebra of shuffles and Lie elements. One implication of his work is that160

the product of two terms S(γ)i1,...,ik0,T and S(γ)j1,...,jm0,T can be written as a sum161

of another collection of terms in S(γ)0,T which only depend on indices with162

(i1, ..., ik) and (j1, ..., jm) called the shuffles of i and j indices.163

Let us denote all such combinations that preserve the order in i and j as164

I ⊔⊔J . For a path γ : [0, T ] → Rd and two multi-indices I and J with all165

I: i1, ..., ik ∈ d and all J: j1, ..., jm ∈ d, it holds that:166

S(γ)I0,TS(γ)
J
0,T =

∑
K∈I⊔⊔J

S(γ)K0,T (25)

The proof is based on Fubini’s theorem and can be found in [6]. For instance:167

S(γ)1S(γ)2 = S(γ)1,2 + S(γ)2,1 (26)

In our example:168

2 ∗ 4 =
16

3
+

8

3
= 8 (27)

In particular, this implies that the product of lower order signatures can be169

expressed as a linear sum of higher order terms. For instance, two ’interact-170

ing’ drifts of paths in two dimensions can be expressed as a sum of variation171

across dimensions.172

2.2.4. Other properties173

In brief terms:174

• Invariance under time reparametrization: sampling has no im-175

pact on signature values. This makes it robust to discrete paths and176

irregular sampling.177

• Chen’s identity:178

S(γ ∗ ϕ)0,T = S(γ)0,t1 ⊗ S(ϕ)t1,T (28)

This identity implies that the signature of a concatenation of two paths179

∗ can be expressed as a tensor product of the individual paths’ signa-180

tures.181

• Time reversal: the time-reversed path (values in Rd are put in the182

reverse order, denoted←, over [a,b]) gives rise to the following equality:183

S(X)a,b ⊗ S(
←−
X )a,b = 1 (29)

9



• Log signatures: we can take the formal logarithm of the signature184

(through the algebra of formal power series). This allows us to write185

a signature in a more concise form as its log-signature. This is often186

a more sparse representation of paths, but is computationally more187

expensive.188

2.3. Cumulative sum of a path and lead-lag transform189

Let us now investigate the interesting properties of paths which originate190

from embedding points using cumulative sums.191

For instance γt = {γ1
t , γ

2
t , ..., γ

d
t } can be transformed (hereafter called CS192

transform) to the path193

γ̃t = {0, γ1
1 , γ

1
1 + γ1

2 , ...,

γ2
1 , γ

2
1 + γ2

2 , ..., γ
d
k}

(30)

with γd
k =

∑k
i=1 γ

d
i . Chevyrev and Oberhauser [7] proved that the truncated194

signature of γ̃ at level M determines the statistical moments up to level195

L of the process that generates the path. The proofs can be found in the196

referenced paper and are beyond the scope of this introduction. However, let197

us consider an example.198

Before we do, let us consider the lead-lag transform of a path, because199

if we apply this transform to the CS transformed data, the formula for the200

mean and variance becomes very straightforward [4].201

The lead-lag transform for a path γt is defined as:202

γ̂ =


{γti , γti+1

}, t ∈ [2i, 2i+ 1]

{γti , γti+1
+ 2(t− (2i+ 1))(γti+2

− γti+1
)}, t ∈ [2i+ 1, 2i+ 3/2]

{γti + 2(t− (2i+ 3/2))(γti+1
− γti+1

), γti+1
, γti+2

}, t ∈ [2i+ 3/2, 2i+ 2]

(31)
with t running over [0, 2N]. The definition seems a bit convoluted, but the203

interpretation and visualisation is very intuitive. The lead-lag transform cre-204

ates two paths, a lead and a lag where values of the initial path are shifted205

one-ahead (lead) or one-behind (lag). For instance, consider the path in R2 :206

γ = {{0, 1, 2, 3}, {1, 8, 5, 6}} depicted in figure 2.3. Its CS transform is shown207

in figure 2.3 and its lead-lag transform in figure 2.3. The CS and lead-lag208

transformed path is ˆ̃γ = {{0, 1, 1, 9, 9, 14, 14, 20, 20}{0, 0, 1, 1, 9, 9, 14, 14, 20}}.209

It is clear that the first two sample moments of the original path isMean(γ1) =210

10



Figure 5: Sample path in R2

Figure 6: CS transform of sample path in figure 2.3

Figure 7: Lead-lag transform of sample path in figure 2.3
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5, V ar(γ1) = 6.5. The signature of ˆ̃γ is (1, 20, 20, 200, 263, 137, 200). Chevyrev211

and Kormilitzin [4] show that212

Mean(X) =
1

T
S(ˆ̃γ)1 (32)

and213

V ar(X) =
−(T + 1)

T 2
S(ˆ̃γ)1,2 +

T − 1

T 2
S(ˆ̃γ)2,1 (33)

When applied to our example we find:214

Mean(X) =
1

4
20 = 5 (34)

215

V ar(X) =
−(4 + 1)

16
137 +

4− 1

16
263 = 6.5 (35)

The traditional moments of γ1 are generally determined by the first two or-216

ders of the signature of the CS transformed path. The lead-lag transform217

helps us to write the moments as straightforward functions of the signa-218

ture. This is already one step towards the rigorous work in [7] which we will219

(briefly) summarize next.220

2.4. The statistical moments of a path: traces of the stochastic law of the221

path222

In the distributional setting (cf. section 1.2), there are well-established223

metrics to compare two distributions. In machine learning, we often en-224

counter distributional distance metrics from information theory, such as the225

Kullback-Leibler (KL) and Jensen-Shannon (JS) divergences between two226

distributions. For stochastic processes that generate vector-valued data,227

there are well-known statistical tests for determining whether two samples228

are generated by the same stochastic process, such as the sequence of (nor-229

malised) moments and the Fourier transform (complex moments).230

For path-valued data, Chevyrev and Oberhauser ([7]) introduce an ana-231

logue to normalised moments using the signature. They prove that for suit-232

able normalizations λ, the sequence233

(E[λ(X)m
∫

dX⊗m])m≥0 (36)

12



determines the law of X uniquely3. According to the paper, this leads to234

efficient algorithms that can be combined with tools from machine learning235

such as maximum mean distances and kernelizations (e.g. [8]).236

Generally, they also argue in favor of signatures as a feature map (i.e.237

to embed paths generated by a stochastic process in into a linear space)238

because of its universality and characteristicness. Universality implies that239

non-linear functions of the data are approximated by linear functionals in240

feature space (cf. above). Characteristicness is exactly their merit, i.e. that241

the expected value of the feature map characterizes the law of the random242

variable. A maximum mean distance4 based on these moments was argued243

for in the market generator paper by Buehler et al [9].244

3. Summary245

5 reasons to use signatures for input representation of path-structured246

data (such as ξ sequences):247

• It serves as a natural basis for describing path or stream5 data that248

preserves the path structure and exploits symmetries.249

• Linearizes the interaction effects between paths (e.g. by means of shuf-250

fle products). Previously referred to as universality.251

• Determines the law of the process (e.g. ξ-generating process) uniquely.252

Previously referred to as characteristicness.253

• Permits model-free (or data-driven) modelling as we do not impose254

parametric structure on the paths to summarize them (e.g. Buehler255

et al. [9])256

• Finally, it is easy to implement and many quality packages available,257

e.g. iisignature and esig packages.258

3Up to tree-like equivalance, see [7].
4A maximum mean discrepancy (MMD) between two samples is defined as d(µ, ν) =

supf |EX∼µ[f(X)] − EY∼ν [f(Y )]|, where the samples are typically kernelized (e.g. over
Gaussian or Euclidean kernels) for computational reasons. Efficient recursive algorithms
then exist to find d.

5I.e. high-dimensional paths
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4. Example applications to ξ processes259

4.1. Relative drawdown prediction of Eurostoxx50 stocks260

As a sample application that links drawdowns, machine learning and sig-261

natures, we will build a very simple classifier algorithm. Given Eurostoxx50262

company data, we want to classify stocks according to their relative draw-263

down characteristics. Given the N=50 previous 6 month performance paths264

(110-day paths, hence γ : [0, 110]→ R50), we want to divide our sample into265

three classes of the next 1 month drawdown performance. We collected data266

from 1999-12-31 to 2021-09-30.267

We do the following:268

• Split up historical sample into blocks of 6 months, every such path is269

a feature γi. We test two transformations of the data:270

– The signature of the price paths up to order 5. These are calcu-271

lated using the iisignature package [10].272

– The signature of the ξ-transformed paths up to order 5 according273

to the definition below (37). Denote by Tγi−s the start date of each274

path i and by Tγi−e the end date. Note that given our discussion,275

the signature determines the moments of the drawdown generating276

process up the the order of truncation.277

ξt = max
i<t

(Pi)− Pt, t ∈ [Tγi−s, Tγi−e] (37)

• For every γi we define the drawdown of the month following the last278

date of the path Tγi−end as E(ξ(γ)). In the training sample, we can279

simply calculate the next-month (20-day) average drawdown as follows:280

Mean(ξ̂) =
1

20

20∑
t=0

ξ̂t, ξ̂t = max
i<t

(Pi)− Pt, t ∈ [Tγi−e, Tγi−e + 20] (38)

• Define the classes Y (= labels) as the top, middle and bottom tertile281

of E(ξ(γ)). We let the classes correspond to a prediction of the points:282

Yj =


(−1, 0), E(ξ(γj)) < q1/3(E(ξ(γ))
(1, 0), q1/3(E(ξ(γ))) < E(ξ(γj)) < q2/3(E(ξ(γ)))
(0, 1), q2/3(E(ξ(γ))) < E(ξ(γj))

(39)
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where j denotes the jth instrument in d = {1, ..., 50} and qx the quantile283

operator up till the xth quantile.284

• Use a Random Forest classifier6 as the simplest example of a machine285

learning pipeline that follows our feature representation.286

Figure 8: Classification accuracy as a function of the signature order

Sig Order Not ξ-transformed ξ-transformed
1 0.708534 0.733365
2 0.790743 0.793877
3 0.805689 0.812199
4 0.810993 0.826663
5 0.817261 0.831003

Table 1: Classification accuracy

We obtain around 80% out-of-sample accuracy (80-20 train-test split) in287

this classification task. Moreover, we notice that the ξ-transform is additive288

to prediction power.289

6scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.
We used 100 estimators or ’trees in the forest’.
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4.2. Detection of large codrawdown timeseries290

Finally, we end with a numerical thought experiment and bottom-up291

simulate correlated drawdown paths, or series with varying ’codrawdowns’.292

For the simulation of the ξ series we use the well-known bivariate Cholesky293

decomposition yielding:294

ξ1 = max (dB1, 0), dB1 ∼ N(0, 1)

ξ2 = max (dB2, 0)

dB2 = ρdB1 +
√

1− ρ2dB3

dB3 ∼ N(0, 1)

(40)

Because of the max truncation required to generate drawdown samples, the295

correlation between ξ1 and ξ2 is not ρ anymore, but this allows us still to296

simulate highly correlated or decorrelated drawdown series, as pictured in297

Figure 9.298

We sample 1000 such series each for two values of ρ, namely a highly299

correlated series (ρ = 0.75) and a decorrelated series (ρ = −0.15). We will300

first look at the difference in the signatures of the CS-transformed paths301

between the two regimes in Figure 4.2, where we show the 2-dimensional302

projections of all signatures up to order 2. The decorrelated paths have blue303

dots and the correlated ones are indicated with red ones. We immediately304

notice that the two regimes correspond to differing projections. We now305

want to test whether a machine learning model can use these projections to306

classify from which regime a new ξ series was generated.307

For this we use a simple regularized linear model, called the LASSO7.308

We find that initially higher order projections substantially contribute to309

predictive power, with an eventual convergence to roughly 95% out-of-sample310

accuracy.311

7Least Absolute Shrinkage and Selection Operator, scikit-
learn.org/stable/modules/generated/sklearn.linear model.Lasso

16



Figure 9: Simulated ξ and CS(ξ) series

Figure 10: Performance of the LASSO classifier as a function of the signature order
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Figure 11: Signature projections up till the second order in two-dimensional space
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