PORTFOLIO DRAWDOWN OPTIMIZATION WITH GENERATIVE MACHINE LEARNING

RFinance June 3, 2022

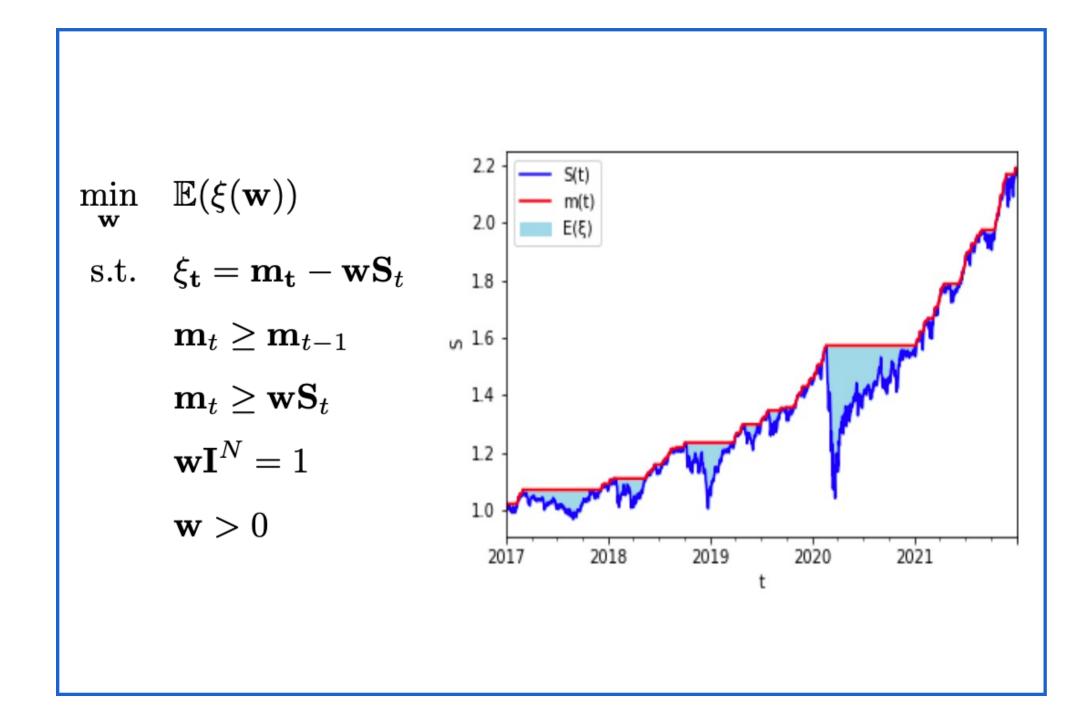
CONTENT

- INTRODUCTION
- PORTFOLIO DRAWDOWNOPTIMIZATION
- HISTORICAL SIMULATION VS
 GENERATIVE ML
- RESULTS: LT ASSET ALLOCATION

InvestSuite

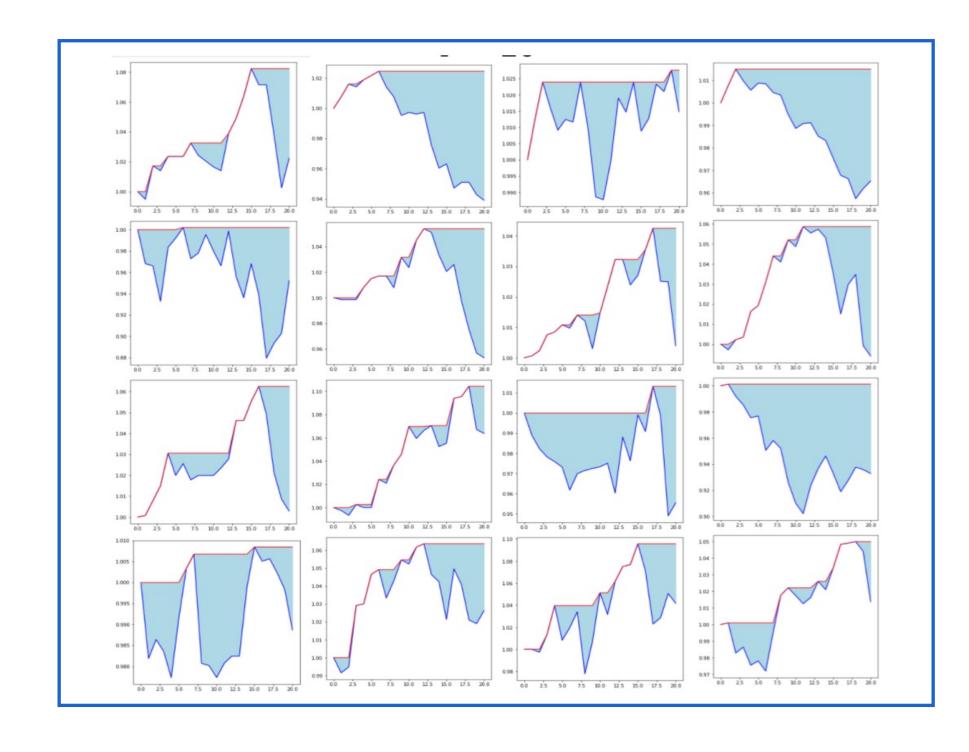
PORTFOLIO DRAWDOWN OPTIMIZATION

- Minimize expected peak-tovalley loss
- Minimize frequency, size and duration of losses
- Dynamic generalization of a deviation measure on the path space (Chekhlov et al. 2005)
 - → path dependence



HISTORICAL SIMULATION VS GENERATIVE ML

- Fundamental question: how should we form expectations about the future while looking at the past
- Noise vs. signal
- Unobserved states
- So-called ergodicity assumption



MARKET GENERATOR

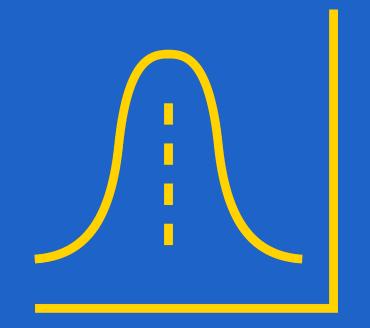
Market Generator =

generative models with the specificity of modelling financial markets

(such as spot asset prices, option prices and volatilities, or order streams in limit order books)

Paper	Year	Architecture	Application
Henry-Labordere [29]	2019	GAN	Option prices
Wiese et al. [30]	2019	GAN	Hedging strategies
Cuchiero et al. [31]	2020	GAN	Volatility models
Ni et al. [32]	2020	GAN	Spot prices
Wiese et al. [33]	2020	GAN	Spot prices
Li et al. [34]	2020	GAN	Order book simulation
Storchan et al. [35]	2020	GAN	Spot prices
Benedetti [36]	2020	GAN	Yield models
Xu et al. [37]	2020	GAN	Spot prices
Pardo and López [38]	2020	GAN	Spot prices
Buehler et al. [39]	2021	GAN	Hedging strategies
Ni et al. [40]	2021	GAN	Spot prices
Pfenninger et al. [41]	2021	GAN	Spot prices
Rosolia and Osterrieder [42]	2021	GAN	Spot prices
Koshiyama et al. [43]	2021	GAN	Spot prices
van Rhijn et al. [44]	2021	GAN	Spot prices
Marti et al. [45]	2021	GAN	Correlation matrices
Coyle et al. [46]	2021	GAN	Spot prices
Wiese et al. [47]	2021	NF	Spot and Option prices
Kondratyev and Schwarz [48]	2019	RBM	Spot prices
Lezmi et al. [49]	2020	RBM / GAN	Spot prices
Wang [50]	2021	RBM / VAE	Spot prices
Buehler et al. [51]	2020	VAE	Spot prices
Fung [52]	2021	VAE	Option prices
Frandsen [53]	2021	VAE	Hedging strategies
Bergeron et al. [54]	2021	VAE	Volatility models
Ning et al. [55]	2021	VAE	Volatility models

Table 1: Overview of the market generator literature



"SCENARIO-BASED SCIENCE IS MAYBE THE BEST WE CAN DO WHEN DEALING WITH COMPLEX SYSTEMS."

DOYNE FARMER

GENERATIVE MACHINE LEARNING

- Approximate data-generating process using flexible (neural) mapping $f_{\theta}(Z)$
- $-f_{\theta}(Z)$ transports some source distribution of randomness Z (e.g. Gaussian) into data X' that is statistically indistinguishable from the original sample X, according to some metric \mathcal{L} .
- = E.g. in the distributional sense $P(X) \approx P_{\theta}(X')$, according to some distance $\mathcal{L} = \sup_{f \in K} \left| \left| \int f(X) P_{\theta}(X) d(X) \int f(X) P(X) d(X) \right| \right|$, e.g. Wasserstein distance, total variation (Kullback-Leibler upper bound by Pinsker's inequality), etc.
- Common neural architectures: GAN, VAE, RBM

MACHINE LEARNING ON PATHS

Signature transform:

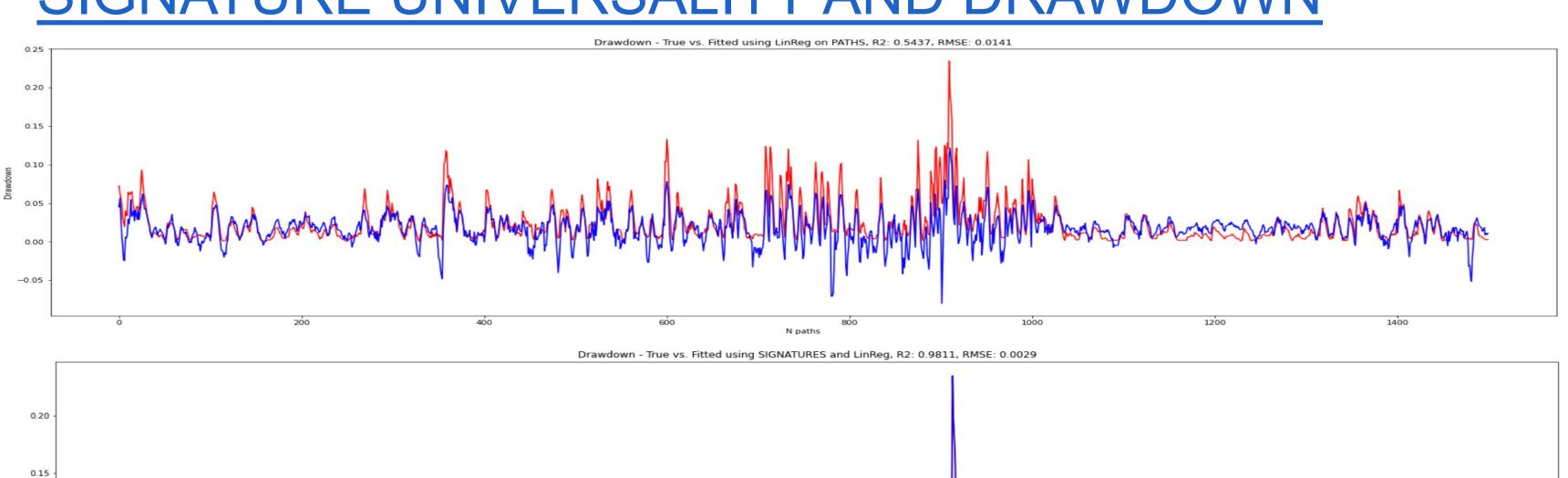
The collection of all iterated integrals of a path that serves as a graded summary of a path describing global and increasingly local properties.

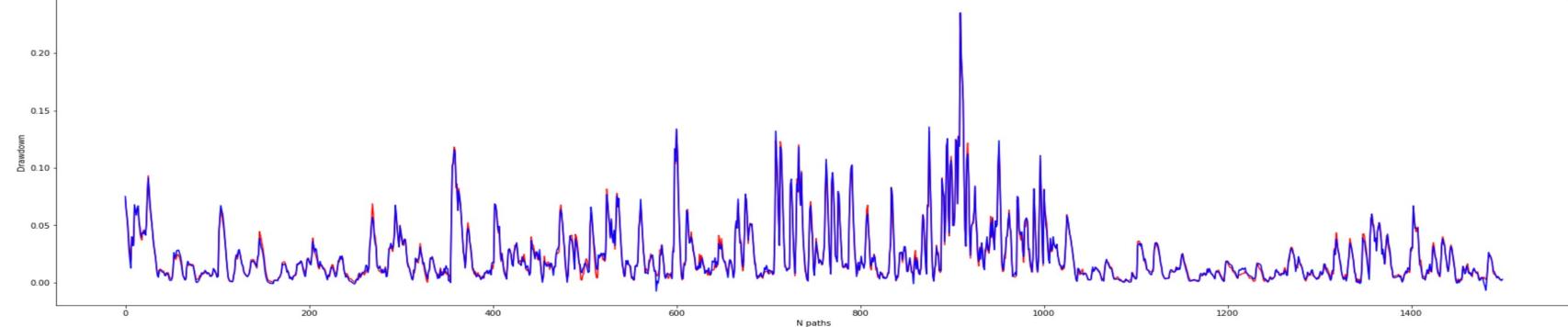
Definition (by Lyons 2014) :
$$\Phi_M = (1, \Phi^1, \Phi^2, ..., \Phi^M)$$

where $\Phi^n = \iiint_{0 < u_1 < ... < u_{\nu} < T} d\gamma_{u_1} \otimes ... \otimes d\gamma_{u_k} \in (\mathbb{R}^d)^{\otimes n}$

Universality (by Levin and Lyons, 2013): $\sup_{\gamma \in K} |f(\gamma) - \langle L, \Phi_M(\gamma) \rangle| < \varepsilon$

SIGNATURE UNIVERSALITY AND DRAWDOWN





FACULTY OF ECONOMICS AND BUSINESS ADMINISTRATION

MACHINE LEARNING ON PATHS: A SIMPLE **JARKET GENERATOR**

Algorithm 1 VAE market generator given impor-

tant path feature Ξ

Input Historical price paths $S:[0,T]\to\mathbb{R}^N$, hyperparameters listed above + signature truncation level M and feature weight α .

Output Trained VAE Market Generator g_{θ}

1: procedure TRAIN

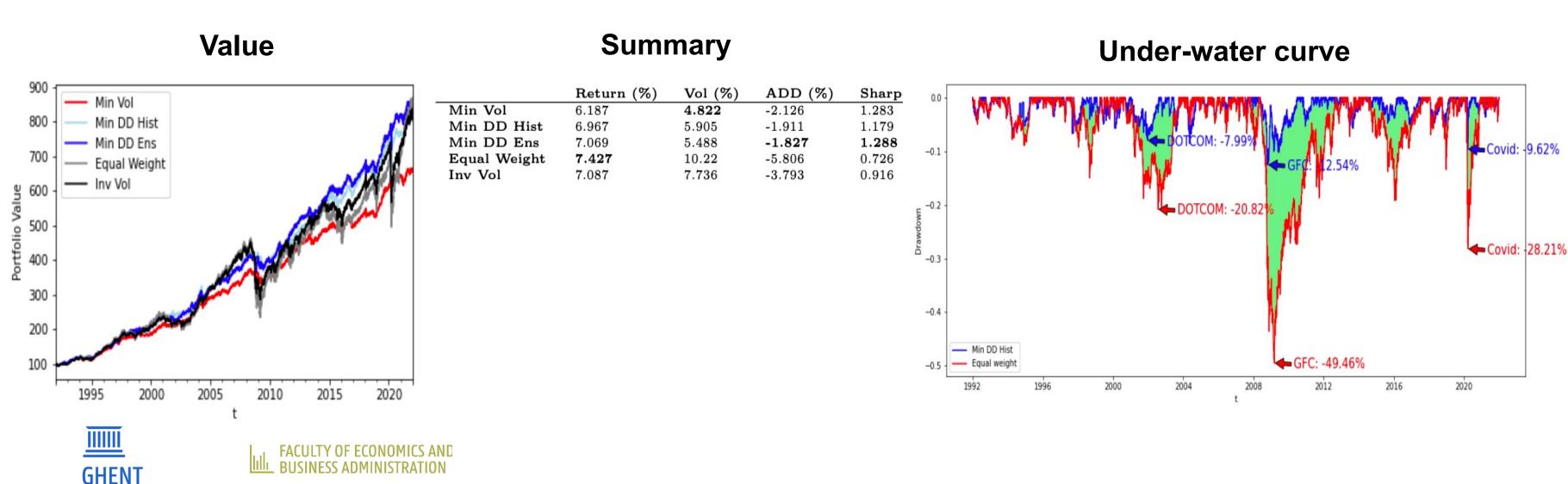
- Divide historical sample into batches \mathcal{B} of length τ , calculate the signatures of these paths truncated at level M, $\Phi_M^{\mathcal{B}}$, calculate the drawdowns Ξ of these paths $\Xi(S^{\mathcal{B}}) = \int_0^{\tau} (max_{t_i < t}(S_{t_i}^{\mathcal{B}}) - S^{\mathcal{B}}) dt$ denoted $\hat{\Xi}(S_b)$
- $\hat{L} \leftarrow LinearRegression(\hat{\Xi}(S^{\mathcal{B}}), \Phi_{M}^{\mathcal{B}})$
- Initialize the parameters θ of the VAE.
- for $i : \{1, ..., N\}$ do: 5:
- Sample a batch \mathcal{B} and pass it through the en-. coder g_{θ} and decoder network g_{θ}^{-1}
- 7:Calculate drawdown $\Xi(S')$ of the output sample S' using the differentiable signature approximation: $\langle \hat{L}, \Phi_M(S') \rangle$
- Define the reconstruction loss term as the. 8: weighted average of RMSE error and drawdown loss: $\mathcal{L}_{\mathcal{R}} = \mathbb{E}_{\mathcal{B}} ||S - S'||^2 + \alpha \mathbb{E}_{\mathcal{B}} ||\langle \hat{L}, \Phi_M(S) \rangle \langle \hat{L}, \Phi_M(S') \rangle ||^2$
- $\mathcal{L} = \mathcal{L}_L + \mathcal{L}_R$ $\theta \leftarrow \theta l \frac{d\mathcal{L}(\theta)}{d\theta}$ 10:
- 11:

PRELIMINARY RESULTS

- 30y backtest on 4 broad asset class indices: US Equity (S&P 500 index), US Bonds (Treasury index), Real Estate (NAREIT index), and Commodities (GSCI).
- Jan 1992 Jan 2022, monthly rebalanced

UNIVERSITY

Benchmarks: min vol, inverse vol, equal weight



Emiel Lemahieu Quantitative Researcher

emiel.lemahieu@investsuite.com

www.linkedin.com/in/emiel-lemahieu

