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To Antoon Viaene 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
“With every hypothetical solution of a scientific problem both the number of unsolved problems 
and the degree of their difficulty increase; they increase much faster than do the solutions. And 
it would be correct to say that whilst our conjectural knowledge is finite, our ignorance is 
infinite.” 

 
 

Karl Popper in ‘The World of Parmenides’ 
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Abstract 
 
This master dissertation revolves around the measurement of market risk. The main 

methodologies in the field are discussed, focusing on their main limitations. Since these 

standard models are known to be biased, i.e. under- or overestimating the risk out-of-

sample, the thesis proposes a combination approach as to reduce the overall bias. 

Fractal properties of stock market returns are used to gauge the complexity or 

roughness of the market. The notion of roughness is intertwined with the assumptions 

made in standard models through the concept of fractional Brownian motion (fBM). 

The thesis checks whether measures of roughness contribute to a more effective 

combination of market risk models. Standard models, together with measures of 

complexity, are fed into a neural network regression model that is used to recognize 

and memorize the complex non-linear relationships between the measured complexity, 

volatility and the eventual risk measure as to minimize the number of unexplained 

exceedances in loss. The model was trained on Google’s Cloud TPU infrastructure for 

approximately eight hundred traded assets from eleven countries and ten different 

industries. The findings imply significant improvements in the combination model 

when adding roughness as a feature. However, the discussion emphasizes model 

mindfulness because of the limited convergence of in-sample results due to a set of 

recurrent data issues. The dissertation expands on the implications for risk managers 

at financial institutions, as well as for asset managers and traders who use the described 

methodologies for optimization purposes. The thesis concludes by stressing the crucial 

point of model mindfulness, since black box risk measurement should always be 

accompanied by a critical mindset. 

 

Key words: market risk, combination model, roughness, fractional dimension, Hurst 

exponent, fractional Brownian motion, machine learning, model mindfulness  
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Introduction 
 
 

“Bottomless wonders spring from simple rules… 
which are repeated without end.” 

Benoît B. Mandelbrot 

 
 

Market risk measurement is a central topic in quantitative finance that gained special 

attention after the 2007-2009 financial crisis. The quantification of market risk has 

major consequences for any financial institution’s risk management and its profitability 

through the risk-based allocation of assets and the determination of capital 

requirements. From an allocation perspective, the proportion of market risk contributed 

by individual positions to the overall portfolio can give the asset manager valuable 

insights in the composition of his portfolio in terms of risk. Market risk measurement 

is also the basis for the quantification of capital buffers. Consequently, the link with 

recent developments in the Basel framework for market risk will be made.  

 

This dissertation starts off in Chapter 1 by defining this specific type of risk and gives a 

brief overview of the main parametric, non-parametric and Monte Carlo approaches to 

its quantification. The goal of these sections is not to delve into the mathematical 

details behind the models, but to discuss their main assumptions, the intuition behind 

them and, most importantly, their main limitations. A main point that will be stressed 

is that alternative approaches often make similar assumptions about the underlying 

stochastic process. For example, parametric distributions can be mapped on a 

corresponding stochastic process that would generate identical results in a Monte 

Carlo. Consequently, some of these models suffer from the same weaknesses. Similarly, 

it does not matter whether we use one extreme quantile (VaR), a mean of tail VaRs 

(ES) or a weight function based on risk-aversion (SRM), if we use the exact same 

methods to come up with the estimations of these concepts. In such a setting, different 

concepts with similar underlying assumptions will typically have similar shortcomings.  

Additionally, these standard methods have a consistent bias, i.e. they tend to be 



 
 

x 
 
 

overaggressive or overconservative out-of-sample. This insight tells us that a 

combination of methods can lower the overall bias. 

 

From an epistemological point of view, one can make the distinction between a theory 

and a model1. A theory has some truthfulness from an objective point of view: it is 

simply how we assume the world works until the theory is falsified. A model always 

uses some sort of analogy. We model the problem universe, i.e. what we don’t 

understand, by using building blocks from the world we think we understand. For 

example, the Black-Scholes model does not describe the world of options in an absolute 

sense.  It does not tell us where an option should trade. The model only comes up with 

a reasonable price if the modeler tells the model what the future volatility will be and 

if he makes assumptions about the underlying stochastic process. Models are never 

correct, but only to the extent that the analogy is justified. The analogy used throughout 

the dissertation is that one can measure the roughness of a price process, using scaling 

properties of time and variance, and that subsequently roughness can be used to assess 

the appropriateness of the yardstick one uses to measure risk. The latter is the research 

hypothesis that will be tested in the dissertation. Do complexity measures really add 

something to the models other than ‘spurious precision’? Alternatively: “Can measures 

of roughness contribute to a more effective combination of market risk measures?” 

Because of the fundamental relationship with the assumptions in the classical models, 

fractal properties might add something to the combination algorithms in a more 

parsimonious way than including a lot of lagged values for the risk measures. Moreover, 

measures for the smoothness of the volatility process have recently entered the 

equations in the so-called rough volatility literature (cf. section 2.6), showing a 

regained interest of fractals in finance.  

To sum up, fractal geometry is the theoretical angle of this dissertation, but I 

acknowledge that the practical approach is atheoretical in nature, and the outcome is 

simply a model whose validity is only justified to the extent that the analogy holds.  

 

 

                                                
1 For great reflections on this topic, read Derman's 'Models. Behaving. Badly.' (2011). 
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In the second chapter, the thesis discusses the basics of fractal geometry from an 

intuitive point of view. The mathematics behind it can be of extraordinary complexity, 

but the goal is again not to lose ourselves in mathematical detail. The focus of these 

sections will be on explaining the link between roughness and finance. That is why, 

without pursuing mathematical rigor, Chapter 2 zooms in on fractional dimensions, 

Hurst exponents and the link with fractional Brownian motions. These sections further 

explain how some of the critical assumptions made in standard models are linked with 

these fractal properties of the stock price time series and how generalizing these 

assumptions by measuring the actual roughness might be useful in market risk 

modeling. Throughout the thesis we check whether rough markets are a useful 

hypothesis for combining risk measures. This main hypothesis thus boils down to 

roughness somehow measuring the uncontrollable element in financial markets, in 

another way than the traditional stochastic volatility models.  

 

The practical approach to the combination model is machine learning. As will be 

explained in Chapter 3, deep neural network regression models are mathematical 

models that are able to combine different inputs into one output measure with the 

ability to recognize and memorize complex relationships between the input data in so-

called hidden layers.  Hence, these models try to go beyond the typical linearities that 

sneak into the standard equations that link the volatility of an asset to its risk measure. 

Moreover, through the concept of loss functions, ML models can better cope with the 

exception notion of loss considered in the backtesting of market risk models, 

leapfrogging mainstay econometric approaches like least-squares or maximum-

likelihood estimators. In addition, these sections point out how the model incorporates 

the Basel traffic-light approach to backtesting into the model. A custom loss function, 

based on the Kupiec-Christoffersen framework, was designed to test the significance of 

the number of exceedances. Furthermore, the implemented code uses genetic 

algorithms that are able to determine the best values for the model’s hyperparameters. 

These algorithms use a population of different network models that breed, i.e. mutate 

in newer generations with different hyperparameters, in order to improve the model’s 
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accuracy over time. After a number of generations, the children of these models have 

superior performances in terms of unexplained exceedances.  

 

In Chapter 4, the set-up of the model is discussed. It explains how the outcomes of the 

models described in Chapter 1 are combined in the input layer together with our 

measures of roughness. The transferability of the results in terms of VaR to ES and 

more general spectral measures will be explained in due detail. All the meaningful 

technical choices that were made will be explained to ensure the reproducibility of the 

model2. Furthermore, the scope of the dataset will be discussed in detail. It comprised 

the 11 countries of the G10 with for each country representative stocks from 10 sectors: 

Finance, Technology, Utilities, Telecommunications, Consumer Services, Health Care, 

Consumer Goods, Industrials, Basic Materials and Oil & Gas. Next, a visual overview of 

the main results that were delivered by the model are given. Predicted risk measures, 

as well as their relationship with returns, are displayed and discussed accordingly. 

 

Chapter 5 discusses the main conclusions that can be drawn from chapter 4. It will 

focus on the main implications of this thesis for risk managers at financial institutions, 

asset managers making risk-based allocation decisions and traders that seek for other 

quantitative ways to assess the efficiency of assets in their search for alpha.  

The end of this dissertation will be a plea for model mindfulness. The model has some 

attractions but also many limitations, with the limited understanding of why results 

converge (and why not) as the one outstanding shortcoming. The “I don’t know how it 

works, but it looks like it simply works” way of thinking had devastating repercussions 

for the financial system about a decade ago. Therefore, I will underscore the 

importance of a critical appraisal of algorithms and appropriate governance supporting 

algorithmic trading and risk management. 

                                                
2 Please note that the code is made available on GitHub [emiellemahieu/AOR]. The reader is 
warmly invited to take a look at the script and share his/her findings with me. 
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Chapter 1  

What is market risk and market risk measurement? 
 
 
 
1.1 Definition 
 
 
 
 
 
 

The above definition, based on Dowd (2007) , explains that market risk boils down to 

unexpected losses that might occur on assets or portfolios of assets whose value is 

dependent on the movement of a market price or rate. We are essentially talking about 

financial contracts that are (contingent) claims on other assets. Stocks are the most 

well-known claims on financial markets, i.e. claims on the equity of companies and/or 

their income or dividends. Futures and forwards are examples of linear products that 

are a claim on some underlying asset in the future, that are therefore prone to market 

fluctuations. The value that one risks with these products will be a linear function of 

the measured variability in the underlying. Options are typically non-linear claims on 

an asset. Their pay-off can be compared to the rectified linear units we will discuss in 

the machine learning part. E.g. a European call has a zero payoff when the spot rate is 

below the strike price at maturity and shows linear increments in payoff if the strike 

increases further. Changes in the volatility, the common perception of riskiness, will 

have non-linear effects on its price, as the Black-Scholes and other option valuation 

models imply. Bonds are claims on the periodical payment of coupons and the notional 

at maturity. They are called fixed income because these cashflows are known in 

advance, if we neglect default risk or optionality. We could argue that the underlying 

market rate driving the fluctuations in the bond’s price, however, are interest rates. 

Bonds thus have a linear response in price for small changes in the underlying rate (cf. 

the bond’s duration) and require convexity corrections for larger swings. 

Market risk:  the prospect of a financial loss due to unforeseen changes in the underlying 
risk factors, i.e. market prices (e.g. stock prices) or market rates (e.g. interest rates).  
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In any of these examples, the quantification of the risk in the underlying, or the 

distributional properties of its returns, will determine the value one risks with the 

contract itself. In this dissertation, we will try to quantify this risk most effectively and 

will refer to this as the measured market risk. Consequently, quantifying the worst 

quantiles of some hypothetical profit and loss (PnL) function of these assets will serve 

as a basis for the revaluation of these contracts in unfortunate but probable scenarios. 

For linear products like futures and forwards, the risk will be a multiple of this quantile, 

while for more complex products, a full revaluation based on these projected losses 

needs to be done. 

 

1.2 Importance 
 

Financial practitioners will attest to the importance of market risk measurement for 

effective risk management. As was implied in the previous paragraph, market risk 

quantification is a first step in order to appropriately hedge the risk that is taken. This 

explains the inextricable link between the mathematics of risk measurement and risk 

management. In general, managing risk properly is one of the most important concerns 

a financial institution faces. 

 

Firstly, it vastly determines the financial institution’s profitability through strategic and 

tactical capital allocation. Risk-return trade-offs and problems of optimization need to 

be aligned with the bank’s risk appetite and need to be based on fully risk-adjusted 

returns: how much return do I expect for the risk that I take, and how is the risk of the 

portfolio distributed across its constituents? We will reintroduce these questions in 

section 1.11 and try to answer them in 4.3. 

 

Secondly, risk modeling is the centerpiece in the calculation of the required capital of a 

bank. Naturally, the maximum likely losses that are implied in a financial institution’s 

PnL determine how much money they should set aside for a bad day. For example, the 

regulatory capital for credit risk is based on the structure of the credit portfolio of the 

bank. The loans’ probabilities of default, the product of a so-called PD model, together 
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with BCBS3 defined correlations are fed into the infamous one-factor copula model that 

determines the regulatory capital. Focusing on market risk, however, Pillar I of the 

Basel accords (see Table 1 below) describes how the extreme quantiles of a 

hypothetical PnL should be translated in risk measures. It consists of the quantitative 

guidelines stipulated by the BCBS that determine how the RWA (risk-weighted assets), 

the denominator in the leverage ratios, are calculated. The most important elements in 

the new framework are the shift from Value-at-Risk (VaR) to Expected Shortfall (ES) 

as the reported measure of risk under stress, and the debate about the PnL attribution 

test. The latter tests how the hypothetical PnL, used to derive the extreme quantiles in 

the risk management department, reflects the actual PnL that is realized in the front-

office. These revisions of the treatment of market risk are part of the so-called FRTB or 

fundamental review of the trading book (see Farag, 2017, for an overview). 

 
Table 1: The Basel framework 

 
 

The relevance of market risk measures for the calculation of the RWA can be brought 

back to the fact that the total market risk of a portfolio (as measured by VaR, see next 

section), is multiplied by a factor of approximately 12.5 to come up with the RWA for 

that portfolio. Typically, this number is corrected with multipliers (depending on the 

model’s backtesting results) and/or penalties for G-SIBs4. Hence, the required capital 

in terms of RWA is approximately 8%, without capital surcharges and other 

corrections5. 

                                                
3 Basel Committee on Banking Supervision 
4 Global Systemically Important Bank 
5 See Allen, Boudoukh & Saunders, 2009, p. 200-232 

The Basel Framework 
Pillar I: 

Capital Requirements 
Pillar II: 

Governance & Supervision 
Pillar III:  
Reporting 

• Credit Risk 
• Market Risk 
• Liquidity Risk 
• Operational Risk 

• Supervisory review (SREP) 
• Internal Capital Adequacy 

Assessment Process 
(ICAAP) 

• Communication of 
scope 

• Risk appetite & 
exposures 

• Assessment process 
• Overall adequacy 
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It goes without saying that the step from risk measure to capital requirement comes 

with a lot of regulatory complications and refinements in addition to the above 

representation. However, due to space constraints, I am not going to give an extensive 

overview of the Basel market risk framework. For that purpose, there is a lot of 

literature available (Decamps et al., 2004; Dierick et al., 2005; Hannoun, 2010), 

including the original regulatory texts (BCBS III, 2017). However, the reader should 

understand the consequences of the models that follow, both on the profitability and 

robustness of the financial system. There has been a lot of (valid) criticism on 

quantitative models in finance and the limitations of their use, but the reader should 

understand that the basis for the leverage of financial institutions and therefore the 

stability of the system still hinges on these concepts and these types of models. 

 

 

1.3 How market risk is measured 
 

“If you give a pilot an altimeter that is sometimes defective, he will crash the plane. 
 Give him nothing and he will look out the window.” 

Nassim N. Taleb 

 
For many years the mainstay in market risk measurement was VaR (Value-at-Risk). It 

answers the fundamental question: “How much money are we maximally expecting to 

lose over a certain time period, given a certain confidence level (cl)?”   

 

VaR can be calculated on an individual asset’s level, portfolio level or VaR can be 

aggregated over portfolios into an institution’s total VaR. VaR essentially boils down to 

calculating the quantile of the PnL distribution corresponding to a certain cl (Liu, 

2005):  

                   (1.1) 

 

This means that the probability p, that the change in market value V of the 

asset/portfolio is worse than the VaR over the 𝑙-day horizon is 1-cl. Hence, this is one 

quantile of the PnL distribution that we briefly discussed before. 

𝑝 = Pr[∆𝑉(𝑙) < 𝑉𝑎𝑅] = 𝐹(𝑉𝑎𝑅) 
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In literature, one will broadly find three approaches to predict these quantiles. The first 

set of approaches are called parametric approaches. One simply imposes a statistical 

distribution on the PnL as to calculate the quantiles from the corresponding quantile 

formula. Another set of approaches are the non-parametric approaches. There, we 

make no assumptions about statistical properties of the PnL. We do not impose a best 

fit on the PnL for the mean, variance, skew and excess kurtosis of returns (or more 

generally some location, shape and scale parameters). However, we try to extract as 

much information as possible from the past n observations. Lastly, Monte Carlo 

simulations are widely used numerical methods where one first assumes a stochastic 

process driving the market fluctuations. Subsequently, we can simulate thousands of 

price paths using a computer or random number generator that can mimic the 

statistical properties of the stochastic process. The worst x% observed paths are then 

used to revalue the portfolio and calculate the 1-x% VaR. 

 

1.4 Parametric models 
 
Parametric models generate quantiles by fitting a statistical distribution on the PnL. 

Once an appropriate distribution is found, one has closed-form solutions for every 

quantile.  There is a large number of distributions in the statistician’s toolbox one can 

choose from:  

 

§ Normal (Gaussian) bell curves for their mathematical simplicity. 

§ Student t distributions capture excess kurtosis through empirically determined 

degrees of freedom. 

§ Lognormal distributions are implied by geometric Brownian motion (cf. infra). 

§ Gamma distribution can accommodate realistic skew and kurtosis and is also 

quite common. 

§ Stable Paretian distributions accommodate fat tails and specify normal and 

Cauchy as special cases. 

§ Gumbel, Weibull or Fréchet distributions are implied by Generalized Extreme 

Value theory (cf. infra). 

§ … 
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For an overview of frequently used distributions, see Dowd (2007) and Allen et al., 

(2009).  The main advantage of this approach is that we can simply write down VaR 

as a function of the distribution’s parameters and the cl, as is done in Table 2 below. 

 

Table 2: Some common parametric specifications of VaR 

 
 

The point of this section is not to drop formulas, nor to be exhaustive or confuse the 

reader. It just illustrates that parametric VaR is fairly simple to implement and 

interpret. However, one has a very static or backward-looking view on risk if one picks 

a certain distribution. It assumes that this distribution does not change, at least for the 

period of the calculation’s purpose. It is clear that this assumption of stationarity does 

not make any sense in highly dynamic markets and the frequency of recalibration plays 

a crucial role in the model’s usefulness. Moreover, parametric approaches are prone to 

other commonly encountered statistical assumptions (see 1.4.1). Maybe the most 

important flaw is that it is very sensitive to its most crucial input: volatility.  

 

                                                
6 Again, the point of this section is not to delve into the implementation and calibration issues. 
However, what is meant by deriving 𝜈 from excess kurtosis K is that 𝜈 is related to K through 
K=3(𝜈 − 2)/(𝜈 − 4). 𝜈 can be approximated by the closest integer to (4K-6)/(K-3). 

Name Formula Comment 
NVaR −𝜇6	 + 𝑧:;𝜎6 (1.2) 

with 𝜇6	, 𝜎6		the average daily return 
and volatility at t respectively. Z 
refers to the standard z-scores for 
confidence cl. 

TVaR 
−𝜇6	 + >

𝜈 − 2
𝜈 𝑡:;𝜎6 

(1.3) 
with 𝜈 degrees of freedom, derived 
from observed excess kurtosis6 and 
t the standard t-score. 

LogVaR 1 − 𝑒BC	DEFGHC (1.4) 
Gumbel VaR −𝜇6	 + 𝜎6ln	(− ln(𝑝)) (1.5) 

when ξ, the shape parameter, 
equals 0 and p = 1-cl (cf. infra) 

Fréchet VaR −𝜇6	 +
𝜎6
𝜉 [1 − (− ln

(𝑝))DL] (1.6) 
with 𝜉 > 0	(cf. infra) 

… … … 
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The dogma in financial theory is that expected returns are mean returns and the risk 

of the return is its dispersion around that mean. The dispersion is typically modeled by 

its variance or sigma. In most applications this is done by stochastic heteroskedasticity 

or stochastic volatility (𝜎6). The modeling of 𝜎6 is the most crucial part of the risk 

modeling exercise. Even in non-parametric (for example filtered historical simulations) 

and MCS approaches (the uncertainty in the stochastic equations), sigma is crucial 

input. Hence, a good model requires a sophisticated, conditional treatment of volatility 

that takes into account volatility-altering regimes or volatility clusters like we observe 

them in reality (Engle, 1982; Engle & Patton, 2007; Mandelbrot, 1972). 

 

This conditional perception of volatility is often implemented by generalized 

autoregressive conditional heteroscedasticity (GARCH) models (Bollerslev, 1986; Engle, 

1982): 

 

GARCH(p,q):   O
𝜇6	 = 		𝛼Q + ∑ 𝛼S,T. 𝜇6DTV

TWS 	+	∑ 𝛼X,T. 𝑎6DTY
TWS + 	𝑎6

𝜎X6 = 𝛽Q + ∑ 𝛽S,T. 𝑎²6DT
\
TWS + ∑ 𝛽X,T. 𝜎²6DT

]
TWS

        (1.7) 

𝑎6=𝜎6𝜀6	, 				𝜀6	~𝑁(0,1) 

 

Typically, a GARCH(1,1) simplification  performs well: 

 

GARCH(1,1):  a
𝜇6	 = 		𝛼Q +	𝛼S. 𝜇6DS + 	𝑢6												
𝜎X6 = 𝛽Q + 𝛽S. 𝑢²6DS + 𝛽X. 𝜎²6DS

               (1.8)   

 𝑢6 = 𝜎6𝜀6	, 				𝜀6	~𝑁(0,1) 

 

GARCH(1,1) is both parsimonious and powerful to capture most of the PnL’s 

distributional properties. This is demonstrated by Robert Engle in a nice example of 

calibrating VaR using a GARCH process (Engle, 2001). The example also aptly 

illustrates that although GARCH is based on a conditional normal return distribution, 

its unconditional distribution is skewed and has excess kurtosis. However, sometimes 

there is a correction needed for asymmetries in the volatility process or heavy-tailed 

error terms (e.g. t-distributed 𝑎6		and/or 𝑢6	). Hence, EGARCH and HARCH with 
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different distributions for 𝜀6	 are considered in the code7. There are many stochastic 

volatility models such as Heston, SABR, Hull-White and so and so forth. The models in 

the code are estimated from a GARCH approach since the model is highly tractable and 

a good starting point for further research8.  

It should be noted that the biggest errors of GARCH models are located in the tails since 

it is essentially no more than normal distributions stretching out and shrinking again 

over time (Mandelbrot & Hudson, 2010). That is why GARCH typically performs well 

to explain variance in an available sample, but has limited use in forecasting out-of-

sample volatility for e.g. FHS purposes (Ding & Meade, 2010). 

 
 

1.4.1  Some preliminary reflections on the dangers of variance 
myopia 

 

“Anything that relies on correlation is charlatanism.” 
Nassim N. Taleb 

 
However sophisticated the treatment of volatility, the mean-variance framework 

embedded in portfolio theory, capital asset pricing theory and inherited in some risk 

management applications brings substantial model risk with it. Focusing too much on 

mean returns and their variances is dangerous, whether we introduce a stochastic 

volatility model or not. This has been documented extensively in literature and it urges 

us to think beyond volatility to model the uncontrollable element in markets. 

First of all, conclusions drawn from the framework often support on ‘elliptical 

assumptions’. These often come down to extreme assumptions of normality or i.i.d. 

returns invoked by standard methodologies. For instance, normal noise is the rule 

rather than the exception in a lot of econometric applications. Some other ‘well-

behaving’ distributions are then derived from this standard normal and tend to 

underestimate risk in the sense that no matter how ‘fat’ the tails become due to 

                                                
7 For a concise overview of these models, see Frömmel (2013), p. 48-58. 
8 It should be mentioned that strictly speaking GARCH is a conditional model of volatility but 
not a stochastic model, since at time t the volatility is completely pre-determined 
(deterministic) given previous values (Brooks, 2019). 
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increasing conditional sigma or unconditional excess kurtosis, they typically decline 

exponentially9. Large swings are considered outliers and outliers tend to be ignored, 

while from a risk management perspective they are the most important observations in 

the sample. In risk management, despite the fact that we know that these methods are 

too aggressive, practical applications (cf. delta-normal VaR) often support on these 

distributions where the moments are time-invariant (recall the previous section). 

Secondly, models related to the mean-variance framework make - often implicit -

assumptions about linearities between risk and return (or volatility and risk measure in 

related risk applications). For instance, think about CAPM (Merton, 1973) of which the 

outcome is a linear relationship between return, as a reward for risk, and the sigma-

based10  risk measure. Another example is Markowitz’ portfolio selection (Markowitz, 

1952; 1991) where investment decisions are based on variance-covariance matrices 

that measure the linear comovements of returns. Many of these limitations simply come 

from how we define correlation and covariance (i.e. Pearson rho11 and models of linear 

dynamics). 

Hidden and unhidden ‘Gaussian assumptions’ are omnipresent in these models. While 

this mainstream finance can be helpful in ordinary portfolio management during 

‘normal trading time’, it falls short for extraordinary low-prob, high impact (LPHI) 

events as considered from a risk perspective (Mandelbrot and Hudson, 2010; Taleb, 

2007). The problem of mean-variance myopia is epitomized by the tendency to use 

elliptical distributions when one is fixated by the first two moments of the return 

sample only. This empirical fact has been extensively documented and presented in 

popular media. Think about Nassim Nicholas Taleb’s bestseller The Black Swan (Taleb, 

2007). This fact is mainly due to the mathematical convenience of these models, as 

well as assumptions being based on fallacies like the CLT and EMH (cf. 1.4.1). Another 

                                                
9  Not all standard models lead to exponential tails. One could roughly distinguish between 
exponential tails (normal, lognormal,…) and the ones resulting from a power law (Pareto, Lévy,…). 
10  A stock’s beta essentially quantifies the covariance between a stock and the overall market over 
the latter’s volatility. 
11 The criticism on Pearson rho and the hazard of static correlations, similarly to stochastic sigma, 
gave rise to stochastic rho modeling. However, many theorists are still very critical about linear 
correlation models. Meissner calls it the ‘work of the devil’ (Meissner, 2015), Taleb calls it 
charlatanism and Wilmott argued: “Instruments whose pricing requires the input of correlation … are 
accidents waiting to happen”. 
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example is the Black-Scholes formula, a Nobel prize winning application of physics12  on 

financial returns. A typical fallacy that explains some of the contradictions in the model, 

like the famous volatility smiles and smirks, is that only the drift (risk-free rate) and 

the volatility (the variance) are considered, but no higher moments of the returns or 

the volatility process are required. It is therefore not surprising that models that include 

(stochastic) return kurtosis or return skew, as well as stochastic volatility models that 

take the volatility of volatility into account, do a better job in explaining option prices. 

 

When JP Morgan published the RiskMetrics’ tech document on VaR in October 1994 

presenting Value-at-risk as a new paradigm for risk measurement, their models 

supported on Gaussian distributions. A 95% daily VaR expects around 12,5 exceptions 

on a yearly basis, assuming the typical 255 trading days. When JPM noticed that the 

actual number was ‘way beyond’ this number, they quickly refined their models. Hence, 

the irony is that models that support on Gaussian assumptions work perfectly when 

they are not needed, during times when benign markets are just moving smoothly. 

These models exactly fail where they are needed in risk management: in the tails.  

A more fundamental reason why people still rely on these distributions in mainstream 

finance is maybe best explained by behavioral finance. Disaster myopia or the tendency 

to underestimate shock probabilities was first described in banking by Guttentag and 

Herring (Guttentag and Herring, 1997) and finds its roots in behavioral economics 

(Kahneman & Tversky, 1982). Two features of human nature aptly explain the 

omnipresence of the aforementioned models: 

 

(1)  Availability heuristic or Ease of recall: “The modeler estimates probability by how 

easily he can recall a similar event.” Frequent events are usually easier to recall than 

infrequent events, which is why outliers are neglected. 

(2)  Threshold heuristic or Too small to matter: “When a probability reaches some critically 

low level, the modeler treats it as if it were zero.” This explains why ‘multiple-sigma’ 

events are not explained by models, while they are observed once in a while. 

                                                
12 Namely geometric Brownian motion and the Feynman-Kac equation. 
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The result of all the above is that this blindness for LPHI events is often (implicitly) 

modeled into the risk models, while they matter most. An important theoretical basis 

for the inclusion of elliptical distributions is the Central Limit Theorem (CLT) and its 

link with the celebrated Efficient Market Hypothesis (Fama, 1998). That is why we will 

briefly zoom in on the CLT and elaborate on the differences with Generalized Extreme 

Value Theory (GEVT). The latter theorem yields another set of distributions that are 

included in the code. 

In summary, these preliminary reflections on the limitations of focusing too much on 

volatility imply that these classical models will often understate risk which will lead to 

anomalous results. As is often the case in science, whenever there appears to be a 

contradiction, this is because of a (hidden) assumption (Witten, 1995). If you probe 

more deeply, you can reveal these assumptions and realize there is no contradiction 

anymore. This is exactly the purpose of this chapter, i.e. continuous awareness of the 

limitations and the biases of the models that were introduced will help us to understand 

the purpose of combining different models into a more comprehensive one. 

 

1.4.2  Central Limit Theorem (CLT) 
 
If you sample n observations from independent populations with identical distributions 

(i.i.d) than, no matter what the underlying distribution is, the mean of the sample will 

be normally distributed, with the population mean as expected value and the sample 

variance divided by n as variance, for n increasing indefinitely. This key finding in 

statistics is well-known and widely used in financial applications in all kinds of contexts 

from entry-level regression settings to the test distributions in the most advanced 

econometric models. In risk measurement, the theorem also sneaks into the equations 

simply because it is such a fundamental result. For instance, the Hull-White 

transformation-into-normality approach  (see 1.4.4) claims that if you standardize 

returns by dividing them by their conditional variance, the CLT can be used to 

determine the PnL distribution (Hull & White, 1998). However, before applying this 

finding haphazardly to returns we need to critically reflect about its definition. Again, 

probing more deeply into the assumptions can give us intuition as to where potential 

improvements lie. 
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§ Only for n going to infinity the mean is normally distributed. Otherwise, it is an 

approximation that worsens as n gets smaller. 

 

§ The returns need to be independent. If returns show some trend or predictability of 

any kind, this assumption is flawed, and mean returns cannot be modeled by a 

Gaussian bell curve. However, researchers refer to the Efficient Market Hypothesis 

(EMH, Fama, 1998) to use the CLT. Indeed, a benign data set of logreturns often 

looks Gaussian. The EMH basically states that under weak efficiency, trying to 

predict markets based on past data will yield no excess returns. Moreover, using 

standard time series analysis techniques, one can even prove that stock markets are 

random walks (Dickey and Fuller, 1979; Phillips and Perron, 1988). Nevertheless, 

the econometrist often forgets that this sort of hypothesis testing is prone to a joint 

hypothesis problem. The Achilles heel of the random walk hypothesis is its close 

relationship with elliptical distributions which, as we just argued, are unable to 

explain real-world price fluctuations. Testing the EMH is often done by assuming 

the EMH as a null hypothesis. Hence, the reliance on the testing distribution is a 

similar type of issue as the initial problem, namely one relies on the same 

(erroneous) assumptions about the asymptotic convergence of the distribution of 

sampling results. Common sense would suggest that the only way to test this 

hypothesis properly is by looking at the probability of certain events happening 

under these assumptions. The latter is exactly what we will do in the backtesting of 

different models in Chapter 4, where we will also conclude that elliptical 

distributions give too low probabilities to extreme events. 

 

§ The returns need to be identically distributed. The question arises whether returns 

over long time horizons are drawn from the same hypothetical population of 

potential returns. This is also questionable considering the earlier point on a static 

versus dynamic view on risk measures. Ideally, a risk measure should not be based 

on static assumptions but should be a combination of different perspectives that are 

combined dynamically according to the market circumstances. There are so many 
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economic, geopolitical,… factors that might impact this distribution over time that 

this assumption is clearly flawed. 

 

§ CLT gives a distribution for the mean, which means that probability statements 

around the mean of the distribution will be more accurate than probability 

statements in the tail. In other words, the reliability of defining quantiles drops with 

lower significance/higher cl statements if you support on CLT. If you make rough 

statements about where the majority of the price movements will be according to 

measured volatility, you will be approximately right. If you make precise (high 

confidence level) statements about extreme quantiles, you will be exactly wrong. 

This is the very opposite of what we need in market risk measurement. 

 
 
1.4.3 Fisher-Tippett-Gnedenko Theorem: Generalized Extreme 

Value Theory (GEVT) 
 
The Fisher-Tippett-Gnedenko theorem (FTGT) samples the maxima from different 

subsamples and defines the asymptotic distribution for the maximum of the population 

as the number of subsamples increases indefinitely (De Haan & Ferreira, 2007; Kotz & 

Nadarajah, 2000). FTGT gives a theoretically correct distribution that is needed for the 

risk measurement problem, i.e. maxima of the LnP function has a Generalized Extreme 

Value (GEV) distribution (Smith, 1990):  

 

 
 
 
 
 
 
 
 
 
 
  

Consider the sample X1, ... , Xn of n i.i.d. random variables with common cumulative 

distribution function (cdf) F. We define the ordered sample by X1,n  ≤  X2,n  ≤ ... ≤  Xn,n = 

Mn, and we are interested in the asymptotic distribution of the maxima Mn as n → ∞. 

The distribution of Mn is easy to write down, since P(Mn ≤ x) = P(X1 ≤ x,...,Xn ≤ x) = 

Fn(x) and has a GEV distribution which corresponds to either a Weibull, Gumbel or 

Fréchet distribution depending on the parameters.  
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Therefore, as its name suggests, GEV focuses on extreme values instead of coming up 

with a distribution for the mean. Instead of being blind for LPHI events, we now 

explicitly use these events to determine the shape of the distribution used for VaR. This 

shape parameter 𝜉, in the context of the GEV distribution also called the tail index, 

determines whether this distribution belongs to the Weibull, Gumbel or Fréchet family. 

In financial applications 𝜉 is typically higher than zero but less than 0.35, therefore 

belonging to the Fréchet family (𝜉 > 0) which has tails obtained from power laws. Lévy, 

Pareto, t-distributions all belong to this family. E.g. sampling from a Student t 

distribution would yield a 𝜉 > 0 for the maximum if n gets large. The special case is 

where 𝜉 = 0 corresponds to a Gumbel distribution. Gumbel typically has exponential 

tails, which we find for normal and lognormal distributions.  

 

The problem with GEV theory, however, is that there are only a handful of meaningful 

maxima available, while we need a very large number of subsamples with their 

respective maxima to estimate the parameters robustly. Hence, the theoretical problem 

is solved but GEV theory leaves us with a practical data issue. As Dowd (2007) 

concludes, there is no evidence that closed-form solutions delivered by GEV theory give 

superior risk measures, because of this practical issue. The reader can find the 

expressions for the Gumbel and Fréchet VaRs that were used in the code in the first 

section of this chapter. Weibull is not considered in this dissertation, since tails 

corresponding to a shape parameter 𝜉 < 0	are even lighter than normal distribution 

and have very limited resemblance with real-life PnLs (McNeil, 1999). 

 
 

1.4.4 Other parametric approaches 
 

Some other parametric approaches that were introduced in academics, but which are 

less frequently used by practitioners are briefly discussed below. They are not included 

in the code for now, but their relative use in a combination model might be of interest 

for further research. These are inter alia (based on Dowd, 2007 ): 
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Table 3: An overview of other parametric approaches 

Name Description 

Lévy approaches… 
(Mandelbrot, Fama, 1965) 
 

… accommodate fat tails but lack conventional closed-form 
solutions and have infinite variance leading to all sorts of 
practical issues. They are self-similar and stable. 
 

Other elliptical and 
hyperbolic approaches… 
(Bauer, 2000) 

… yield very normal-like VaR formulas with generalizations 
of the elliptical distributions to the hyperbolic family. 
However, they do not always yield closed-form solutions for 
VaR. 
 

Normal Mixture 
approaches… 
(Venkataraman, 1997; 
Wang, 2001) 
 

…where the return process is drawn from a mixture of 
normal distributions with different variances (cf. link with 
1.6). 

Jump Diffusion Models… 
(Merton, 1976) 

…are similar to mixture approach but the extra component 
is not another normal with different variance but a jump 
variable reflecting a large market swing (cf. link with 1.6). 
For an introduction, see Matsuda, 2004. 
 

Cornish-Fisher 
approximations… 
(Jaschke, 2001) 
 

…use the Cornish-Fisher expansion to determine the 
percentiles of distributions which are near normal. 
 

The Hull-White 
Transformation-into-
normality approach… 
(Hull & White, 1998) 

…standardize the return data by dividing by e.g. GARCH 
forecasts so that returns become near i.i.d. and the var-covar 
framework can be applied. 

Copula approaches… 
(Malevergne and Sornette, 
2004) 

…for multi-variate VaR calculations, copula functions enable 
to capture the dependence structure between the variables 
and estimate VaR based on any underlying distribution 
(Gaussian copula, Student t, etc.) 
 

 
 
 

1.5 Non-parametric models 
 

“History doesn’t repeat itself, but it often rhymes.” 
Mark Twain 

 
Non-parametric models do not impose strong distributional assumptions on the PnL 

data. Instead, we look at the past n observations and make inferences that are purely 
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based on the data (HS) or manipulated data, though without any necessary parametric 

restrictions (FHS). Three very widely used approaches are: 

 

I. Historical Simulation (HS) 

 

Historical simulation (Allen et al., 2009; Dowd, 2007; Pritsker, 2006) is the most 

intuitive and easiest approach to market risk quantification. We simply use 

empirical quantiles of the past n observations. For example, the cl% VaR is the 1-cl 

percentile of the past n observations. If we take 500 past observations into 

consideration, the 95% VaR is the 26th observation when the returns are ordered 

from smaller to larger. Alternatively: 

 

𝑐𝑙%	𝑉𝑎𝑅 = [𝑟6]SD:;     (1.9) 

 

Where rt are the ordered return observations and [.] takes the 1-cl percentile. 

 

II. Filtered Historical Simulation (FHS) 

 

A slightly more sophisticated and widely used approach is applying the HS method 

above on filtered data. Filtering (Vosper et al. 2002; Brandolini & Colucci, 2012) is 

typically done by standardizing for volatility or by using matrix decompositions in 

multi-variate contexts. For instance, we estimate a GARCH process on the past n 

observations. Then, we subtract zero as an approximate mean return over the 

sample and divide by the estimated sigma. Hence, we have normalized or 

standardized data. Subsequently, we take the 1-cl percentile and multiply it with 

the best guess for future volatility to come up with an appropriate VaR number. The 

vol forecasting can be done by moving average forecasting techniques or by 

observing the implied volatility. By filtering the data, we somehow capture the 

volatility altering regimes without making strong assumptions about the 

distribution of the PnL: 

𝑐𝑙%	𝑉𝑎𝑅 = 𝜎f[
gC
HC
]SD:;     (1.10) 
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where we first standardize the returns 𝑟6 by dividing by the volatility 𝜎6, then take 

the (1-cl)Nth observation and multiply by the volatility forecast 𝜎f. This forecast can 

be a one- or multiple-step-ahead GARCH or RiskMetrics’ EWMA forecast (see Ding 

& Meade, 2010 for a comparison) or by back-solving the implied volatility (IV) from 

options. Equation 1.10 is sometimes referred to as volatility-weighted historical 

simulation, which is just one simple example of a filtering mechanism. 

 

III. Kernel functions 

 

Kernel functions try to fit a continuous distribution on the discrete empirical PnL 

without imposing a statistical form, i.e. by linking the points with linear or quadratic 

mathematical functions (see Butler & Schachter, 1997 for an application). Cubic 

splines are well-known in financial applications, e.g. for estimating a continuous 

yield curve out of discrete combinations of maturities and zero-coupon yields. This 

technique is widely used and deserves mentioning as a non-parametric approach. 

However, it is not implemented in the code as we will focus on (filtered) historical 

simulations. 

 

As with the parametric approaches, there are many other techniques that can be 

qualified as non-parametric (for an overview, again see Allen et al., 2009 and Dowd, 

2007). However, we will focus on HS and FHS.  In line with what we will discuss in 

the next section, it is hard to ensure that the scope of the input measures is not too 

narrow nor too broad. From a feature engineering perspective (also see chapter 3), 

features should be informative enough, i.e. have enough variation. In our case this 

means that some measures have a positive bias and others a negative bias, and the 

more angles we include the better the model gets as long as the approaches are not 

perfectly correlated. However, we should be wary of not violating the principle of 

parsimony and therefore reduce the number of features to a ‘sufficiently informative 

selection’. That is why we pick the most tractable models that are available and leave 

ample room for improvements in follow-on research.  
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The important caveat attached to this set of approaches is that although there seems 

like no distribution needs to be assumed, the implicit assumption is that the future PnL 

distribution is sufficiently similar to the distribution of the past N observations. 

Therefore, if the model is applied on an economically very benign period, the model 

will typically lower the VaR as the probability of a new shock increases. Moreover, 

without manipulation, the biggest loss that the model can predict is the biggest loss in 

the sample, which is also a major shortcoming. That is why historical simulations are 

empirically found to be a more aggressive method, i.e. it tends to understate the risk 

(Pritsker, 2006)13. 

 

1.6 Monte Carlo Simulations 
 
Monte Carlo Simulations (MCS) use the vast computing power that is available 

nowadays to simulate thousands of price paths and revalues the portfolio given these 

paths. The quantiles needed for our risk measure can then be deduced from the x% 

worst valuations. This description seems to imply that there is no statistical distribution 

that needs to be assumed. However, the mechanism driving the variation behind the 

sample paths assumes a certain distribution. In fact, the randomness of this process 

maps to a certain distribution (Mandelbrot & Hudson, 2010). The infinitesimal 

differences in prices are modeled by differential equations. The changes are thus linked 

to an assumed data generating process, which might have mean-reverting or trending 

properties. The next paragraphs zoom in on these stochastic differential equations 

(SDEs) and the link with these concepts. Without trying to pursue mathematical rigor, 

a basic understanding of the modeling choices one has with these SDEs will help the 

reader to better understand the link with fractals and roughness in the next chapter. 

 

In essence, stochastic differential equations are the mathematics behind the process 

that drives the creation of sample paths in a Monte Carlo. The mainstay in financial 

applications is Brownian motion (BM). In 1900, it was introduced in a doctoral thesis 

                                                
13 The author further explains the dangers of under-responsiveness and so-called ghost effects 
that are typical for historical simulations. The former issue has to do with the critique given 
in the last paragraph, while the latter means that large changes in VaR are observed when 
LPHI events drop out of the simulation window. 
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with the promising title ‘Theory of Speculation’ by Louis Bachelier (Bachelier, 1900). 

BM was borrowed from statistical physics and describes the random movement of a gas 

molecule through space. It is also referred to as the diffusion model. Smoke diffuses 

randomly from the top of a cigarette according to the same statistics as a stock price 

moves in a Brownian model. It is closely related to the random walk theory and the 

EMH. When a process shows no mean-reversion nor some deterministic trend, it is said 

to be a random walk. A random walk for infinitesimal time steps is then called a 

Brownian motion. A next observation is just a random deviation added to the previous 

observation. Moreover, it is a so-called martingale: the expected value for tomorrow’s 

price is the price of today. Therefore, if St is the stock price at time t, this is equal to St-

1 plus some random variable. This random variable has a normal distribution with mean 

zero and volatility sigma. Therefore, the PnL implied by dSt has a Gaussian distribution. 

 

A very popular model for option valuation is the Nobel prize winning Black-Scholes 

model (Black and Scholes, 1973). Black-Scholes assumes geometric Brownian motion 

(GBM): 

(1.11) 

 

 

 

In the GBM case, the logarithm of the returns (logreturns) follows a Brownian motion. 

In this case, our PnL is lognormally distributed. GBM is a very widely used assumption 

in finance to model risk and to price assets. For instance, more complex exotic options 

and other derivatives have no closed-form pricing formula and need to be priced 

through MCSs that often impose a GBM on the price process. A typical fallacy is that 

modelers equal unpredictability to BM. There are different levels of randomness, i.e. 

there are many cases other than pure mean-reversion, trending or BM as we will discuss 

in the next chapter.  

 

A special property of the BM model is that increments are proportional with the square 

root of time (Velasquez, 2010): 

𝑑𝑆6 = 𝜇𝑆6𝑑𝑡 + 𝜎𝑆6𝑑𝑧 

Change in stock price S Drift term: 
proportional with 
mean over time 

Uncertainty term:  
proportional with volatility 
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𝑑𝑆6	~	√𝑑𝑡 ∗ 𝜀      (1.12) 

 

where 𝜀 has a standard normal distribution. We say that for this stochastic process the 

distance traveled is proportional with the ½th power of the time elapsed (Mandelbrot, 

2013; Velasquez, 2010). This property is of extraordinary importance for the next 

chapter. It is essentially a consequence of BM having no memory. For processes without 

a memory, we can say that increments scale with the square root of time. This property 

only holds if the autocovariance between increments is zero. That is why fractional 

Brownian motion, which will have a generalized autocovariance function to model long 

memory, does not use the square root rule (see 2.6). This will be explained in detail in 

the next chapter. For now, it might also be interesting to look at some other often 

recurring SDEs in finance. We can generalize the GBM expression for a general drift 

and uncertainty term as a function of St: 

 

 (1.13) 

 

The functions a and b can be altered to fulfill the needs of the modeler. Some of the 

most common SDEs in finance are: 

 

Table 4: Some common SDEs 

Name Formula  

Ornstein-

Uhlenbeck process 

𝑑𝑆6 = 𝜅(𝜃 − 𝑆6)𝑑𝑡 + 𝛾𝑑𝑊 

 

(1.14) 

Correlated Brownian 

motions 
𝑑𝑆6 = 𝜌𝑑𝑊S + q1 − 𝜌²𝑑𝑊X 

 

(1.15) 

Merton jump diffusion 𝑑𝑆6 = (𝑟 − 𝜈)𝑆6𝑑𝑡 + 𝜎𝑆6𝑑𝑊 + (𝑒r6 − 1)𝑆6𝑑𝑁 

 

(1.16) 

Heston model 𝑑𝑆6 = 𝜇𝑆6𝑑𝑡 + s𝑣6𝑆6𝑑𝑊X 

𝑑𝑣6 = 𝜅(𝜃 − 𝑣6)𝑑𝑡 + 𝜉s𝑣6𝑑𝑊X 

(1.17) 

   

 

 

𝑑𝑆6 = 𝑎(𝑆6)𝑑𝑡 + 𝑏(𝑆6)𝑑𝑊 
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Ornstein-Uhlenbeck processes are found in applications where the modeled quantity is 

pulled towards some long-term mean or equilibrium θ. For an introduction, see Schöbel 

and Zhu, 1999. The coefficient 𝜅 is called the gravity and measures the degree to which 

the series is pulled towards this equilibrium. It is used for modeling bilateral 

correlations between assets (Meissner, 2013), interest rates (Vasicek, 1977) and many 

other mean-reverting processes. Correlated Brownian motions (Zhou, 2001) are an 

extension of BM where BMs with different variances are combined using their 

correlation 𝜌. Merton models (Matsuda, 2004; Merton, 1976), of which the jump 

diffusion SDE is probably the most famous one, also combines multiple normal 

distributions. In this case, however, the other normal is used to model discrete jumps 

in the process. The Ornstein-Uhlenbeck and Heston processes will provide good insights 

in the link with the next chapter.  

The Heston model (Heston, 1993) replaces the general 𝜎 volatility by the root of the 

variance function of time 𝑣6, which has its own SDE as a model of stochastic volatility. 

The changes in volatility are modeled similarly to an Ornstein-Uhlenbeck process, i.e. 

the change is proportional to the deviation of the instantaneous variance 𝑣6 and the 

long-run variance 𝜃. The stochastic part of this equation is proportional with the 

volatility itself s𝑣6 and the volatility of the volatility 𝜉. This volatility of volatility is 

introduced mainly to be able to make second order corrections in the time-varying 

volatility process, for example to accommodate the so-called volatility smile in the time 

structure of options. 

As a conclusion, there are a plethora of SDEs and corresponding distributions to use. 

We must not forget that, although computers can start from these SDEs to simulate 

paths without an explicit need for the PnL distribution, for every SDE there exists a 

corresponding distribution. Therefore, we should remember that essentially the same 

fitting needs to be done and thus the same assumptions need to be made as considered 

under the parametric approaches. The advantage of using MCSs is that it is applicable 

to revalue more complex assets like exotic derivatives, when no clear formula for its 

value is clear, in which case numeric simulation methods are needed to determine the 

price. The main advantage of parametric approaches is the availability of closed-form 

solutions.  
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1.7 Limitations of the VaR approach 
 

One might wonder why the previous sections are explained from the VaR perspective 

when the limitations of the VaR technique have been extensively reviewed in literature, 

e.g.: 

§ It is only one quantile; we do not know what happens if the loss exceeds VaR. 

§ It is prone to several critical assumptions, like we just illustrated. 

§ Its estimation often adopts a static view on risk: a rear-mirror view instead of 

forward-looking. 

§ VaR is not a coherent risk measure, since it is not sub-additive (cf. 1.9). 

 

First empirical evidence on the performance of VaR models at big investment banks 

goes back to Berkowitz and O’Brien (2002) who show that the reported numbers were 

highly unsatisfactory. Their simple model, combining ARMA14 returns with GARCH 

volatility of the bank’s PnL, outperformed the banks’ internal models. Biases and 

approximations at all kinds of structural levels of the bank are typically aggregated and 

errors worsened, leading to violation ratios which by no means can be reconciled with 

model integrity.  

 

Moreover, empirical studies show that some techniques systematically underestimate 

risk (e.g. NVaR) and others overestimate risk (e.g. GEVT distributions) consistently out-

of-sample. Inui, Kijima, & Kitano (2005) show that for most distributions with a GARCH 

approach to estimating volatility, an overestimating bias is present while for HS an 

underestimating bias is mostly the case (Inui et al., 2005). Moreover, Beder (1995) 

aptly illustrates how different approaches yield substantially different VaR estimates. 

Liu (2005) explains that the bias of different techniques often has consistently different 

signs, which implies that the combination of techniques might decrease the overall bias 

                                                
14 Autoregressive Moving Averages (ARMA) models are simple univariate time series models 
that use the autocorrelation present in a time series to explain a single quantity by looking at 
its own past (autoregressive part) and the disturbance terms in the past (moving average part). 
In this case the modeled quantity is the PnL of a bank, where the disturbances have a variance 
modeled by a GARCH process. 
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for VaR estimation.  In this train of thought, a combination of VaR measures can give 

a more adequate risk measure.  

 

A crucial nuance to the VaR critique is the transferability from VaR to other risk 

measures by, for instance, defining ES as an equally weighted average of the tail VaRs 

that were initially calculated with a VaR model. Therefore, let us not throw VaR in the 

bin but elaborate on it and define ES in the next section. 

 

1.8 Expected Shortfall  
 

As an answer to the critique that VaR only considers one quantile, Expected Shortfall 

(ES) – also average tail VaR or loss, Conditional VaR, CVaR,… – is the mean of the tail 

quantiles (Allen et al., 2009; Dowd, 2007). It describes how bad the loss is, given that 

things turn sour. 

 

𝐸𝑆(𝑐𝑙) = 𝐸(𝐿|𝐿 > 𝑉𝑎𝑅(𝑐𝑙)) = 	 S
SD:; ∫ 𝑞\𝑑𝑝

SD:;
Q     (1.18) 

 

Consequently, we can find a closed-form ES formula by integrating a chosen 

distribution over its tail, as has been done in literature (Andreev et al., 2005; Broda 

and Paolella, 2011). It is clear that, in contrast to VaR, ES does not only consider one 

quantile q, but calculates the mean of the VaRs in the tail. As such, a proper VaR model 

can be used to come up with estimates for ES. However, this alternative way of looking 

at bad quantiles of a hypothetical PnL does not provide us with an alternative method 

to calculate those quantiles practically. Therefore, we will need to resort to the same 

techniques as described above to calculate ES. Again, note that ES was included in the 

market risk reforms under the finalizations of Basel III - referred to as Basel IV - and is 

now the new standard for reporting market risk (BCBS III, 2017; Farag, 2017).  
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1.9 Coherent Risk Measures 
 

Instead of building and estimating risk measures and assessing if they are doing a good 

job afterwards, one should first define the desired properties of such a measure. Artzner 

& Delbaen (1999), defined 4 such theoretical properties a risk measure should have 

and defined a coherent risk measure: 

 

§ Sub-additivity: the sum of the risk of positions in a portfolio may not be larger 

than the risk of those positions held individually.  

§ Positive homogeneity: a multiple of a certain exposure, in terms of the invested 

amount, should result in a multiple of the risk measure.  

§ Translational invariance: certain values in a portfolio (e.g. cash or certain future 

cashflows), are not at risk and should be deductible from the risk measure of a 

portfolio without such a certain future cashflow. E.g. if we maximally expect to 

lose $2m on a portfolio of bonds, but we do get $1m in cash at T without any 

risk, our effective risk is only $1m.  

§ Monotonicity: the risk of a position with a higher level of future value should be 

lower than that of a position with the same notional but a lower future value. 

Hence, the common link between  valuation and discount rate should be implied 

by the risk measure. 

 

Now that we have defined these desired properties, we can conclude that ES is coherent 

and VaR not. The main reason for this is that VaR is not sub-additive. If one writes deep 

out-of-the-money options, for example, quantiles in the tail will have a value of zero 

until one goes to some very extreme quantile. The result is that the VaR of a portfolio 

of those options will be higher than the risk of an individual option. This is because the 

joint probability of one such a low-probability, high-impact event happening given 

multiple options is higher than its individual probability. This will shift non-zero losses 

to lower cls on the PnL distribution. This is against the common principle of 

diversification, simply because VaR does not look further than one quantile. This also 
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explains how traders can game the VaR: as long as some big loss is a little bit less 

probable than the determined significance level, it will remain unmeasured by the VaR. 

 

1.10 Spectral risk measures 
 

Spectral risk measures (SRM) are a generalization of the weighting of the PnL quantiles 

(Dowd, 2007): 

SRM = ∫ 𝑤(𝑝)𝑞\𝑑𝑝
S
Q      (1.19) 

 

As denoted above, one weighs the quantiles (q) of the PnL for different significance 

levels p according to a weight w(𝑝) which is a function of p. Notice that VaR is a special 

case where w(𝑝) is 0 for every value, except p = 1-cl where w(𝑝) = 1. ES is a special 

case where w(𝑝) is 1/1-cl for every value up to p=1-cl and w(𝑝)=0 after. We say a 

spectral risk measure is coherent if 3 conditions are satisfied concerning the weights 

𝑤(𝑝) (Acerbi, 2002): 

I. 𝑤(𝑝) is positive    

II. 𝑤(𝑝)	is decreasing   

III. 𝑤(𝑝) sums up to one over every p  

 

Or in the words of Dowd (2007): “The key to coherence is that a risk measure must give 

higher losses at least the same weight as lower losses.” In theory, these weights 𝑤(𝑝) 

should be derived from a subjective risk-aversion function. Thus, an optimal risk 

measure for each user depends on the user’s risk aversion. In contrast to sigma or VaR, 

which is supposed to be the same for any market participant, risk according to SRM 

depends on the user’s risk-aversion function. This fits the belief that risk is subjective 

and not two-dimensional, unlike the way it was presented in classical quantitative 

models. For instance, an exponential risk-aversion function borrowed from micro-

economics (Pratt and Zeckhauser,1987),  

𝑤|(𝑝) = 	 }
~(�~�)/�

|(SD}
~��)

       (1.20) 
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where 𝛾 reflects the user’s degree of risk-aversion, can be used to come up with the 

risk measure: 

𝑀| = 	 ∫ }~(�~�)/�

|(SD}
~��)
. 𝑞\. 𝑑𝑝

S
Q      (1.21) 

 

This is just some theoretical example introduced by Dowd (2007) that should 

familiarize the reader with the idea behind spectral risk measures. The goal of this 

subchapter, however, is to understand that any risk measure can be seen as a weighted 

average of (extreme) quantiles of the PnL. It is key to understand that if VaR is some 

extreme quantile measure, other more comprehensive risk measures can be derived 

from VaR. This point is very critical for the rest of the thesis. Although only parametric 

and non-parametric approaches to VaR are initially considered and the eventual 

measure is a combination of VaRs, other more general risk measures can be calculated 

by reiterating the model over different values of significance. Indeed, the outcomes of this 

reiteration are different losses (VaRs) with corresponding probabilities (1-cl) and can 

be seen as scenarios. These losses predicted by our final model can be seen as drawings 

from the real tail distribution of our PnL. Their expected value is nothing else than the 

ES predicted by our final model, and therefore we can say that this reiteration yields 

coherent risk measures. From the view of SRM, we can iterate our model over any cl 

(not only over the tail) and define a risk-aversion-based weighting function that fulfills 

the three above requirements. This insight is key for this dissertation, and the link 

between our final model and coherence will be further explained in chapter 4. 

 
 
1.11 Risk management and allocation decisions: Portfolio VaR 
 

How can an improved risk measure contribute to optimal capital allocation? In the 

long-run much criticism on modern portfolio theory (cf. 1.4.1) is not grounded, because 

tail events and deviations from the random walk model do not really make sense when 

we aggregate returns to multi-year horizons. With temporal aggregation of data, one 

could argue that strategic allocation decisions can be made correctly using a mean-

variance framework. This means that the proportion of the different asset classes in our 
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portfolio, i.e. the percentage of stocks, bonds and alternative investments, can be 

derived from some long-run desired Sharpe ratio15  (Markowitz, 1991; Sharpe, 1994). 

Pricing in tail events for long-term horizons might influence the fund manager’s 

decisions badly. It will move the investor away from asset classes where Black Swan 

events are probable, which is suboptimal. The biggest loss on financial markets is the 

opportunity cost of never taking the risk that yields an excess return. Or like Buffet 

formulates it: in the long-run everyone wins on the financial markets, only those who 

do not participate lose. Or in the words of Virgil: “Fortune sides with him who dares.”  

 

Nevertheless, the specific stocks, bonds or alternative investments within these 

categories and their market timing (i.e. security selection and tactical allocation) need 

to be chosen more carefully than by just imposing a variance constraint and maximizing 

the expected return for the combination of assets within this constraint. For tactical 

capital allocations, i.e. the weights for specific assets within these categories, mean-

variance optimization has serious bias. Other methods to determine an optimal risky 

portfolio like minimum variance (Clarke et al., 2011), naïve Talmudic rules (Duchin 

and Levy, 2009) and combination methods (Kan and Zhou, 2007; Tu and Zhou, 2011) 

still hinge on sigma as the predominant measure of uncertainty around the expected 

returns (see Frömmel, 2013 for an overview). Most of these alternative portfolio 

methods inherit the MPT mindset and/or do not come up with more comprehensive 

constraints with regard to risk, or even outright resort to rules of thumb. 

 

As other more comprehensive measures of risk can accommodate more aspects of the 

underlying market risk than mere sigma, it would be interesting to use VaR or its 

related concepts as a basis for risk-adjusting returns, i.e. to come up with a better sense 

of the reward for variability. In other words, what is the Sharpe ratio of an asset where 

we generalize sigma to any measure of risk like VaR, ES and SRM? This framework should 

be consistent with our notion of diversification. The VaR of a portfolio should be lower 

than the VaR of the constituent assets if held individually. Furthermore, we are 

                                                
15 The Sharpe ratio compares the excess return of an asset over the risk-free rate with the  
  variability in the asset’s return, as measured by its volatility (𝜎).  
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interested in what the contribution is of one position in the total risk of the portfolio. 

To answer these questions, we can resort to the portfolio VaR literature16 (Alexander 

and Baptista, 2002; Allen et al., 2009; Campbell et al., 2001; Hallerbach, 1999; 

Stoyanov et al., 2013).  

 

A first important concept is the individual VaR or standalone VaR of a position. It is 

simply the VaR calculated using any of the above methods for one individual position 

as if held separately. We therefore neglect any correlations or comovement with the 

other positions in the portfolio. Secondly, the portfolio VaR or diversified VaR is the total 

VaR of the portfolio that fully takes into account the covariances between all the 

positions. One could simply calculate the portfolio VaR by applying the above VaR 

methods on the PnL of the portfolio, instead of using individual PnLs of the positions 

and taking the covariances into account.  

 

The following three concepts try to best answer the crucial question: “Which position 

should I alter to modify my portfolio VaR most effectively?”: (1) Marginal VaR, (2) 

Incremental VaR and (3) Component VaR.  

 

(1) The marginal VaR (MVaR) of a position i is the change in portfolio VaR (VaRp) 

due to taking an additional unit of exposure of that position 𝑑𝑋T. In theory that 

additional amount is infinitesimal (hence 𝑑), so that it corresponds with the first 

derivative of the VaR with respect to the position. 

 

𝑀𝑉𝑎𝑅T =
�����
���

      (1.22) 

(2) Incremental VaR (IVaR) of a position i is similar to marginal VaR but the 

additional exposure can now be large. It considers how an actual change a in a 

given position influences the portfolio VaR p.  

 

𝐼𝑉𝑎𝑅T = 	∆𝑉𝑎𝑅T = 𝑉𝑎𝑅\�� − 𝑉𝑎𝑅\    (1.23) 

                                                
16 Probably the most concise and best introduction is given in chapter 7 of Jorion, 2000. 
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It is computationally more burdensome than MVaR, since MVaR is some first-

order approximation, while incremental VaR requires full revaluation for its 

accuracy. However, we could write IVaR as the following expansion (if 𝑎 is 

small): 

𝑉𝑎𝑅\�� = 	𝑉𝑎𝑅\ + 	𝑎	
�����
���

+ S
X
𝑎X �

�����
���

� 	+…  (1.24) 

 

𝐼𝑉𝑎𝑅T 			≈ 		𝑎	𝑀𝑉𝑎𝑅T      (1.25) 

 

This first-order approximation approach is clearly less accurate but way faster 

and thus less costly.  

(3) Lastly, the concept that looks at the total position i at once is called the 

component VaR (CVaR). How much does each position i, in its entirety, 

contribute to the total risk of the portfolio (with weights w and a total invested 

amount of P)? 

𝐶𝑉𝑎𝑅T = 	𝑀𝑉𝑎𝑅T	𝑤T	𝑃      (1.26) 

 

𝑉𝑎𝑅\ = 	∑ 𝐶𝑉𝑎𝑅T�
TWS       (1.27) 

 

Now the link with portfolio management is rather straightforward. The excess returns 

can easily be compared with the obtained MVaRs. When a position contributes a lot of 

risk to the portfolio and does not deliver appropriate excess returns ER, the fund 

manager can start to sell off that position so that the portfolio VaR drops significantly 

while the expected returns do not. Now the asset manager can use the obtained funds 

to reinvest in assets with lower VaRs and comparable or higher returns. In an optimal 

scenario, ER/MVaR ratios are somewhat smoothened out over the portfolio as to 

increase its efficiency. De facto, this corresponds to a mean-VaR constraint over the 

portfolio (Alexander & Baptista, 2002). The same authors show that these algorithms 

yield significantly different conclusions than mean-variance constraints. Moreover, 

Stoyanov et al., 2013, argue that the return characteristics are not necessarily sensitive 

to the MVaR values, in contrast to the mean-variance trade-off proposed by MPT. This 
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sort of analysis can also shine a new light on the risk of the constituent assets of the 

portfolio by breaking down portfolio VaR (Hallerbach, 1999).  

In brief, this section first provided some intuition behind how risk measurement can 

trickle down to portfolio management decisions. This link will be explained in further 

detail in 4.2. 

 

1.12 Conclusion 
 
To end this first chapter, some concluding remarks need to be made. Hopefully, the 

text was able to separate the math on the one hand – as quantitative methods for risk 

measurement is a vast field of research – and the intuition and main takeaways that 

are relevant for the research question on the other hand. They could be summarized 

by the following propositions: 

 

§ No matter how promising new risk measures like ES and SRM appear compared to 

VaR, they support on similar assumptions in the way that they are estimated. In other 

words, these practical approaches support on the same essential assumptions, 

leading to similar shortcomings. The recently adopted ES captures a more 

comprehensive sense of risk, i.e. it takes into account the tail events of the PnL.  

Nevertheless, it does not describe a better way to estimate them practically. 

 

§ However sophisticated the treatment of vol or the statistical process assumed, it is hard 

to ensure a priori that the eventual risk measure will not be overconservative or 

overaggressive. The first problem concerns underutilization of capital, or a 

misallocation of means because value-creating investments are not made from a 

risk perspective. Industry adoption of these models would result in slower economic 

growth. Again, the worst loss on financial markets is the opportunity cost of not 

taking risk. The second problem concerns taking exposures too aggressively, which 

inevitably leads to increased and unsustainable levels of leverage. These aggressive 

models are very vulnerable to exogenous shocks (referred to as Black Swan events, 

correlation breakdowns, volatility breakouts,… also see 3.3). 
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Because of these remarks, this dissertation starts from the point of view that only a 

combination of techniques can give satisfying results. One could for example calculate 

risk measures under different assumptions, report them in a table and discuss their 

meaning and limitations according to the prevalent economic ‘context’. Alternatively, 

one could calculate VaR under different assumptions and choose the model that fits the 

purpose (regulatory reporting, portfolio optimization etc.) best. However, this 

dissertation proposes that one can also combine these different outputs quantitatively into 

a more comprehensive risk measure. The goal is to get a result of which the overall bias 

is lower, i.e. by combining alternative assumptions dynamically according to the 

‘context’. This contextual parameter could be modeled by any informative quantity 

linked to the models’ underlying assumptions like fundamentals of the underlying asset 

(‘micro-signals’), ‘macro-signals’ on the business cycle, Twitter sentiment data on the 

underlying and so and so forth. The practical way of combining these methods that is 

proposed in this research is based on roughness and is discussed in the following 

chapters on fractal geometry and neural networks. 
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Chapter 2  

What is roughness? On fractional dimensions, 
Hurst exponents and fractional Brownian motions 
 
 
 

2.1 Predicting predictability, a coastline analogy 
 
 
Fractal:  any of various extremely irregular curves or shapes for which any suitably chosen 
part is similar in shape to a given larger or smaller part when magnified or reduced to the 
same size. – Merriam-Webster Dictionary 
 
 
Fractal:  a geometrical or physical structure having an irregular or fragmented shape at all 
scales of measurement between a greatest and smallest scale such that certain mathematical 
or physical properties of the structure behave as if the [fractal] dimensions of the structure 
are greater than the spatial dimensions. – Dictionary.com  
 
 
Benoît B. Mandelbrot (1924-2010) was the father of fractal mathematics. He was born 

in Poland, grew up in France and worked mainly in the USA at IBM, Harvard and Yale. 

He was an extraordinary mathematician and a textbook example of a ‘polymath’ who 

had broad interests in the practical sciences. He especially contributed in those fields 

where what he coined as ‘the art of roughness’ and ‘the uncontrolled element in life’ had 

practical implications (Nathan, 2015).  

 

Fractal geometry is essentially the art of roughness. It is, in contrast to the perfect shapes 

of Euclidean geometry, the study of the irregularities in nature. Rough clouds, ragged 

surfaces and other common shapes in nature can hardly be described by perfect 

triangles, squares and other Euclidean building blocks. Mandelbrot therefore preferred 

the term roughness before irregular, since nature is not smooth, and roughness is very 

regular. Recall the very first quote in this dissertation: “Bottomless wonders spring from 

simple rules… which are repeated without end.” In one of his last speeches, Mandelbrot 

concluded with this concise but very powerful statement. Extremely complex things are 

often a product of very simple rules, which are repeated to such an extent that the 
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system looks extremely complex from the outside. Once you start to iterate very simple 

mathematical expressions, for instance, one can find sets of numbers of infinite 

complexity. The Mandelbrot set is probably the most well-known set of this kind, whose 

almost psychedelic images have become famous17. Similarly, the SDEs of the previous 

chapter try to reproduce such a complex, chaotic system like a stock market, where 

dynamics are captured by 2-inch equations. These are essentially very simple rules, 

albeit stochastic instead of deterministic. Important to understand is that fractals are 

way more than mathematical constructions. Fractals are everywhere in nature: from 

the bronchi in our lungs to the branches of trees, from the roughness of clouds to the 

irregular shapes of coast lines. 

In his 1967 paper ‘How long is the coast of Britain? Statistical self-similarity and 

fractional dimension’ (Mandelbrot, 1967), Mandelbrot introduced the concept of 

fractional dimensions as a good measure of roughness. By a fluke, he discovered that 

particular cases of power laws, once discovered by a mathematician named Felix 

Hausdorff, are applicable to measure the roughness of surfaces that are no perfect 

Euclidean shapes (Mandelbrot, 2010). The paradox in the paper concerned the 

measurement of Britain’s coast line. Huge disagreements existed between different 

researchers on how long it was, known as the coastline paradox. 

                                                
17 Psychedelic in the sense that it is really a sensory overload. I highly recommend to Google 
search ‘Mandelbrot Set’ or ‘Mandelbrot Zoom’ and experience it yourself. 

Figure 1: How long is the coast of Britain? Answer: vastly measure-dependent.  
               Source: simulations based on Wolfram code 
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Building on the work of L.F. Richardson, Mandelbrot showed that the unit of 

measurement greatly influenced the eventual length, since the smaller the unit, the 

more irregularities are taken into account and the longer the eventual measured 

distance. Figure 1 aptly illustrates this effect, which is referred to as the Richardson 

effect. Consequently, there is no such thing as a ‘real’ coast length. Imagine that one 

would be able to scale down to the size of a grain of sand, then one could still find 

more irregularities, driving the length of the coast line to an enormous distance. The 

total length will not converge to some ‘real’ length, as one would intuitively assume. 

Indeed, the very intuitive notion of the length of something can be a complete fallacy, 

when that something does not adhere to the laws of Euclid. For these real-world shapes, 

Mandelbrot showed that a power law exists between the scale and the length, which 

leads to a fixed exponent: the roughness. 

 

Consider a scale factor, l, a number N as a function of l, which will denote the number 

of smaller parts needed to replace the initial larger part N(l) and the dimension D. We 

scale down by dividing the initial line by l in the one-dimensional case. For the two- 

and three-dimensional case, we consider squares and cubes with a basis l (see Figure 2 

below).  

  
Figure 2: Fractional dimensions. Source: adapted from Ryan (2007),  
               based on the work of Felix Hausdorff (Hausdorff, 1919) 

l = 1 
 
 
 
 
l = 1/2 
 
 
 
 
l = 1/3 

D = 1             D = 2            D = 3 
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We need 2 (= N) lines of length 1/2 (=l) to replace the initial line. We need 4 squares 

and 8 cubes to do the same in the 2- and 3-dimensional cases. Similarly, we need 3 

lines of length 1/3 to replace the initial 1-dimensional shape. We require 9 squares and 

27 cubes to extend to the higher dimensions.  In general, we need (1/l)D shapes.  We 

clearly notice a power law between the number of smaller scaled D-dimensional 

structures and 1/l, with the dimension D as the fixed exponent: 

 

𝑁(l) = (S
l
)�       (2.1) 

 

Using logarithms, we can isolate the dimension D: 

 

log�	𝑁(l)� = D	log �S
l
�     (2.2) 

 

Furthermore, if we generalize D to both integer and fractional values, we can define 

the fractional dimension as: 

𝐷 = 	 ����	�(l)�
�����l�

	      (2.3) 

 

where D is called the Hausdorff dimension18. For ‘pure’ fractals, shapes that have scale-

invariant complexity, this fractional dimension is an exact fit in the log-log plot and 

referred to as fractal dimension. For real-world shapes, a similar power law rationale 

can be applied, but we generally find an approximating fit in the log-log plot (cf. infra). 

Fractional dimensions are thus a generalization of our common perception of 

dimensions to non-integer values, where we always focus on the number of smaller 

pieces required to reconfigure a larger piece. Intuitively, we could say that fractional 

dimensions measure how detail or complexity behaves at different scales. Practically, 

as we will soon demonstrate, this means roughness. 

                                                
18 The Hausdorff dimension should not be confused with the Minkowski–Bouligand dimension, 
often called the box-counting dimension, which takes a limit of a similar expression and is 
equivalent for most fractals. For illustration purposes, we pick the simplest version here as to 
give some intuition behind the ideas, not to be mathematically rigorous. 
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When we apply a similar power law rationale to coast lines, we find what Mandelbrot 

discovered in 1967. The size of the ruler used to measure the coast length can be 

compared with l, while N(l) now corresponds to the total coast length. Mandelbrot 

pointed out that we cannot simply quote one measured length because it is context 

dependent, i.e. depending on the unit of measurement. This means that things we 

measure – thus any dimension - of which our common sense would suggest that it is 

an absolute dimension - like coast lines or, indeed, risk - are in fact a relative dimension, 

i.e. dependent on context. Questions like ‘how do I measure it?’ and ‘is this yardstick 

 appropriate?’ are often more important than the eventual outcome. First, we need to 

assess the roughness of the coast line, or how detail changes with scale, and then we 

can draw conclusions on the appropriateness of the yardstick. For instance, small scales 

and rough borders will inflate distances compared to other measurements of larger 

scale, smoother coast lines.  Thus, before comparing apples with oranges, one should 

consider both how you measure something and how rough that something is you 

measure, i.e. how much you deviate from a perfect Euclidean shape. 

 

These last statements allow us to make the link with financial risk management. In 

market risk measurement, one should also consider both what yardstick you use to 

measure the risk and to what extent the assumptions behind that yardstick are 

consistent with the roughness of the real process. From the previous chapter we know 

that it is very hazardous to unleash Gaussian models on very rough markets. Now we 

can say that this would be tantamount to trying to measure the circumference of a 

cloud using straight rulers only. Nature cannot be captured by smooth shapes only, nor 

can markets. You are doomed to neglect irregularities, which are – ironically - more 

important for our problem than the regularities.   

Since risk is a latent variable, there is no such thing as the ‘real’ VaR. Similar to the 

length of coast lines, defining it as some absolute number is a complete fallacy. It is 

therefore very hard to claim more precision by mathematically enhancing new VaR 

models – recall the comparison of GEV with CLT or the extensions on common SDEs - 

as it is often perceived ‘overengineered’ or too technical to use practically. An 

alternative, however, is to challenge existing models with respect to their assumed 
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roughness. We could measure to what extent the assumed roughness is consistent with 

the measured roughness and give these different yardsticks weights accordingly in a 

combination model. In other words, we are not trying to reinvent the wheel but to 

combine different existing methods according to their appropriateness. 

Obviously, the analogy that thus runs through this dissertation as a common thread is 

about measuring roughness and linking it to yardsticks.  It is not about predicting what 

the markets are going to do, since that would imply having a crystal ball and that would 

make this dissertation not worth the paper it is written on. The purpose of the model 

should not be confused with technical analysis (in its strict sense, i.e. predicting future 

prices based on past prices). However, the goal of applying fractal dimensions and 

Hurst exponents in this thesis, is to assess the different roughnesses of stocks and 

indices to predict the adequacy of the models used, based on the link between 

roughness and the assumptions made in the standard risk models. Providing intuition 

towards this link and elaborating on its implications is thus the main goal of this 

chapter.  

In summary, measuring roughness is about predicting predictability. In line with the 

analogy, we are not trying to come up with spuriously precise coast lengths, but with 

a sense of how accurate estimates are likely to be, given the measured roughness and 

the link with the unit of measurement that was used. We try to predict how appropriate 

a risk measure (‘predictability of risk’) will be under a certain context (‘the roughness 

price process’). If this analogy holds, roughness can be used to more effectively combine 

risk measure models. As will be pointed out in 2.6, fractional Brownian motion as a 

generalization of BM can serve as a link between the previously discussed methods and 

thus qualifies as a simple and logical but powerful connector in a combination model.  

As a final remark, similar to the conclusion in Mandelbrot and Hudson (2010), we 

realize that since we cannot better predict markets using fractal theoretical properties, 

this will not bring us fortune, but it can save us a lot of money if it gives us insight in 

the model risk we are taking. The research hypothesis in this dissertation borrows from 

this intuition and states that the deviation from the standard assumptions, as measured 

by the roughness, can be used to give weights to models with different biases. 
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2.1.1  Fractional dimension: Algorithms  
 

For the calculation of D for financial time series, different theoretically equivalent 

algorithms exist: Higuchi, Katz, box-counting methods and so and so forth. For our 

purpose, all these algorithms basically try to measure to what extent one-dimensional 

data starts to fill the two-dimensional plane. 

We could say that a perfect Euclidean line does not fill the plane at all. From the 

moment more detail appears on smaller timescales, it is just as if the line starts to fill 

the plane. ‘Just as if’, since this only really applies for fractal structures with infinite 

complexity. In the words of Mandelbrot: “Mathematicians thought a curve was a curve, 

a plane was a plane and the two don’t mix. Well, they do mix.”  

However, this intuition is also applicable to shapes that are no pure fractals, like 

financial time series that show resemblance with statistical self-similarity, albeit not 

perfect. Consequently, very smooth stock charts will have a fractional dimension higher 

than but close to 1 (a straight line between the first and the last trading day). Very 

rough charts that contain a lot of detail, on the other hand, have a fractional dimension 

lower than but close to 2 (a plane), because they look like they cover a lot of the plane. 

Figure 3 below shows Python simulations for extreme values of D (1.99, 1.5 and 1.01) 

respectively.  

 

 

 
Figure 3: A Python simulation of sample quote paths for extreme values of D 
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We consider two of the most widely used algorithms for time series data in literature: 

Higuchi’s and Katz’ algorithm. Higuchi’s algorithm is used, amongst other applications, 

in medical research to assess EEG diagrams, for example to distinguish between 

different modes of sleep. Research can be found where Katz’ algo is used for ECG 

diagrams to distinguish between healthy heart sequences versus disorders. There are 

many other applications in geology, biology, et cetera.  

 

2.1.1.1 Higuchi’s algorithm 
 
 
Higuchi’s algorithm basically measures Euclidean distances between consecutive 

observations for different timescales and compares the average distance with the scale. 

The description is borrowed from Cervantes-De la Torre in the Journal of Physics 

(Cervantes-De la Torre et al., 2013): 

 

 

 

In order to obtain the fractal dimension D, Higuchi considered a finite set of observations, 

taken at a regular interval: 

𝑋(1), 	𝑋(2), 	𝑋(3), … , 𝑋(𝑁)     (2.4) 
 

From this series, a new one 𝑋�  , must be constructed, which is defined as follows: 
 

𝑋� ; 	𝑋(𝑚), 	𝑋(𝑚 + 𝑘), 	𝑋(𝑚 + 2𝑘), … , 𝑋 �𝑚 + ¤�D 
�
¥ 𝑘�   (2.5) 

 
with (m = 1, 2,. . . , k); and where [·] denotes the Gauss notation, that is the bigger integer, 
and both k and m are integers. m and k indicate the initial time and the interval time, 
respectively. 
 
For a time interval equal to k, one gets k sets of new time series. For example, for k = 4 and 
N = 100, four new time series are obtained: 

 
𝑋¦S: 	𝑋(1), 	𝑋(5), 	𝑋(9), … , 𝑋(97)     (2.6) 
𝑋¦X: 	𝑋(2), 	𝑋(6), 	𝑋(10), … , 𝑋(98)    (2.6) 
𝑋¦­: 	𝑋(3), 	𝑋(7), 	𝑋(11), … , 𝑋(99)    (2.6) 
𝑋¦¦: 	𝑋(4), 	𝑋(8), 	𝑋(12), … , 𝑋(100)    (2.6) 

 
Higuchi defines the length of the curve associated to each time series,	𝑋� , as follows: 
 

𝐿 (𝑘) = 	
1
𝑘
⎝

⎛ ° �𝑋(𝑚 + 𝑖𝑘) − 𝑋(𝑚 + (𝑖 − 1)𝑘)�

¤�D � ¥

TWS
⎠

⎞ (
𝑁 − 1

¤𝑁 −𝑚𝑘 ¥ 𝑘
) 

 
where the term �DS

¤´~µ¶ ¥�
 is a normalization factor. Higuchi takes the average value 〈𝐿(𝑘)〉 of 

the k lengths associated to the time series given by the previous formula for 𝐿 (𝑘). If the 
average value follows a power law: 
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2.1.1.2 Katz’ algorithm 
 
Katz provides a slightly different approach to measuring the distances. This description 

was borrowed from ‘A Comparison of Waveform Fractal Dimension Algorithms’ (Esteller 

et al., 2001): 

 

  

 

 

 

 

 

 

 

 

 

Katz’ D can be defined as: 

𝐷 = ;¹º(»)
;¹º(�)

       (2.9) 

 

where L is the total length of the curve or sum of distances between successive points, and d is 

the diameter estimated as the distance between the first point of the sequence and the point of 

the sequence that provides the farthest distance. 

 

   (2.6) 
Higuchi defines the length of the curve associated to each time series,	𝑋� , as follows: 
 

𝐿 (𝑘) = 	
1
𝑘
⎝

⎛ ° �𝑋(𝑚 + 𝑖𝑘) − 𝑋(𝑚 + (𝑖 − 1)𝑘)�

¤�D � ¥

TWS
⎠

⎞ (
𝑁 − 1

¤𝑁 −𝑚𝑘 ¥ 𝑘
) 

 
where the term �DS

¤´~µ¶ ¥�
 is a normalization factor. Higuchi takes the average value 〈𝐿(𝑘)〉 of 

the k lengths associated to the time series given by the previous formula for 𝐿 (𝑘). If the 
average value follows a power law: 

〈𝐿(𝑘)〉 ∝ 𝑘D�  

then the curve has a fractal dimension D. 
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These algorithms are fairly easy to implement in Python19 since there is already a lot 

of sample code available on GitHub, so that it is just a matter of finetuning the code 

to the requirements of the application.  

                                                
19 If you might have any questions on how these are implemented, again, please take a look at 
emiellemahieu/AOR on GitHub. The code is pretty self-explanatory and well-documented. 

Mathematically, d can be expressed as: 

 

𝑑 = 𝑚𝑎𝑥(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(1, 𝑖))      (2.10) 

 

Considering the distance between each point of the sequence and the first, point 𝑖	is the one 

that maximizes the distance with respect to the first point.  

 

The D compares the actual number of units that compose a curve with the minimum number of 

units required to reproduce a pattern of the same spatial extent. Ds computed in this fashion 

depend upon the measurement units used. If the units are different, then so are the Ds. Katz’s 

approach solves this problem by creating a general unit or yardstick: the average step or 

average distance between successive points 𝑎. 

 

Normalizing distances by this average results in:  

 

𝐷 =
;¹º�ÀÁ

Â
ÃÄ

;¹º�ÀÁ
Å
ÃÄ

       (2.11) 

 

Defining n as the number of steps in the curve, then n = L/a, and the above equation can be 

written as: 

 

𝐷 = ;¹º(Æ)

;¹º�ÅG��;¹º(Æ)
      (2.12) 

 

This expression summarizes Katz’s approach to calculate the fractional dimension. 
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2.2 An introduction to (anti-)persistence in econometrics:  
    mean reversion, trends and random walks 

 
In chapter 1, we briefly introduced the concepts of mean reversion, trends and random 

walks in section 1.6. In order to bridge the gap between the concepts of roughness and 

the methods of the previous chapter, we need a sidetrack to mainstream econometrics. 

In simple applications20, mean reversion is often quantified with a degree of mean 

reversion using a process that goes back to the Ornstein-Uhlenbeck SDE mentioned 

earlier (Meissner, 2013): 

 

𝑆6 − 𝑆6DS = 𝑎(𝜇Ç − 𝑆6DS)∆𝑡 + 	𝜎Ç𝜀√∆𝑡    (2.13) 

 

where the change in price is proportional with the difference of the previous price and 

the long-term mean 𝜇S. This expression is no different from a discrete version of the 

SDE in 1.6. The 𝑎 coefficient denotes the degree of mean reversion, the mean reversion 

rate or gravity. 𝜎Ç𝜀√∆𝑡 is the stochasticity part where 𝜎S denotes the volatility in stock 

price S and 𝜀 a random drawing, typically (but not necessarily) drawn from a standard 

normal, i.e.  𝜀(𝑡) ~ N(0,1). A simple and widely used model for mean reversion, for 

instance to predict interest rates based on some long-term mean, is one without the 

stochasticity term: 

𝑆6 − 𝑆6DS = 𝑎(𝜇Ç − 𝑆6DS)∆𝑡     (2.14) 

 

If we look at daily returns with the unit of t in days, then ∆𝑡=1 

 

𝑆6 − 𝑆6DS = 𝑎𝜇Ç − 𝑎𝑆6DS     (2.15) 

 

Which can be easily estimated with a simple linear regression Y = 𝑏È+𝑎ÉX 

𝑆6 − 𝑆6DS = 𝑎𝜇Ç − 𝑎𝑆6DS     (2.16) 

                                                
20 Meissner (2013) uses this process to measure the anti-persistence of correlation between an 
individual stock and an index, i.e. the mean reversion of this 𝜌 around its long-term mean. Of 
course, one could take a different angle to measure the same thing, but the description he provides 
is very intuitive. 

Y 𝑏È 𝑎É 𝑋 
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After obtaining estimates for Y = 𝑏È	+	𝑎ÉX, we can obtain the degree of mean reversion 

- 𝑎É, and the long-term mean  𝑏È/𝑎É . For instance, if 𝑎É = -0,50 we close the gap between 

an observation and the long-term mean with, on average, 50% of that distance towards 

that LT mean over the next time period. For example, if the long-term mean of inflation 

is 2% and we are currently at 1%, a rational estimate of the quantity at the next time 

step (e.g. next year) would be 1,50% or 50% percent of the difference closer to the 

long-run equilibrium.  Thus, significant gravity or the anti-persistent tendency to mean-

revert causes some degree of predictability in market prices or rates. 

The opposite property of mean reversion is the autocorrelation (𝜌), which can be 

measured as: 

𝜌 = :¹Y(ÇC,ÇC~�)
H(ÇC).H(ÇC~�)

      (2.17) 

 

Autocorrelation is the reverse property to mean reversion. It is the most common 

measure of persistence, since it is simply the Pearson correlation between subsequent 

observations. Note that 𝜌 sums up to one with the degree of mean reversion: 𝜌 + a = 

121. Hence, quantities with high autocorrelation will have the tendency to ‘trend’ and 

low tendency to mean revert, i.e. a next observation will be some increment added or 

subtracted to the previous observation in line with its past, rather than be pulled 

towards the long-term mean.  

                                                
21 Remark that we estimate 𝜌 and a from the levels of S and not the returns. The three types of 
predictability then would correspond to positive, negative or no autocorrelation respectively. 

Figure 4: Three types of predictability (1): Trending Belgian GDP (left), mean reverting Belgian 
Output Growth (right) 
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Roughly speaking, we can distinguish between three types of predictability: trending 

series, mean reverting series and random walks. Real-world examples of these types of 

predictability are depicted below in Figure 4 and 5.  

 

These sample time series all have some sort of predictability. If you put your hand on 

the right-hand-side of a graph of your choice and have to predict what will happen you 

will probably (1) continue going up a little every year for the Belgian GDP, (2) apply 

the above mean-reversion principle intuitively and say that if the growth in GDP is 

higher this year than usually, it is most likely to drop and vice versa and (3) that you 

do not really know what the BEL20 is going to do. The BEL20 is sloping upwards since 

2014 but one can see that at previous times of higher growth (e.g. in the beginning of 

2015) this was not persistent in the second half of 2015. 

We could state that a random walk is a special case of a trend with perfect 

autocorrelation22 and no memory.  Does this mean that the degree of mean reversion 

is zero? What does this imply for the long-term mean in Equation 2.13? It is clear that 

this is a special case. Although beyond the scope of this section, the random walk 

corresponds to a unit root case in financial time series analysis. In such a setting, the 

mean is continuously changing and consequently the long-term mean of the BEL20 has 

                                                
22 Again, note there is perfect correlation in the prices but no autocorrelation in the returns. No 
memory thus implies that there is perfect correlation between St and the one-period lag St-1, since 
all the information is reflected in the last price and all the prices before St-1 do not matter. 

Figure 5: Three types of predictability (2): Random Walk BEL20 Index  
Source: Econometrics, Time Series Analysis, Everaert G. (2019). 
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no meaning. The only relevant piece of information is the price today, since the mean 

of past prices is changing every day. This is called non-stationarity.  

Although very intuitive and widely used23, measuring this level of mean reversion or 

autocorrelation like described above is a simple heuristic for the predictability of time 

series. It is a linear approach of analysis, which is too strong an assumption to work 

fine in finance. It makes assumptions on linear correlations (e.g. the 𝜌 calculation and 

the initial linear regression) between consecutive observations. Additionally, this 

process is not able to capture the long memory24 of the time series in contrast to Hurst 

exponents. That is why we move away from these linear concepts and delve into R/S 

analysis in the next section. 

As a concluding remark, it has to be said that the above description is a very reductive 

view on modern time series econometrics. Of course, things are more complicated than 

depicted above, but it nicely represents the intuition needed for the next section. In a 

proper analysis, autocorrelation would give rise to an autoregressive model (ARMA) in 

a univariate case and ADL or VAR models for multivariate analyses. The formal tests 

for unit roots are called (Augmented) Dickey-Fuller tests (Dickey and Fuller, 1979; 

Phillips and Perron, 1988) and enable us to distinguish deterministic trends and 

random walks with or without drift from stationary series. Additionally, important 

relationships between different quantities can complicate the analysis. For instance, 

cointegration relationships and the multi-dimensionality of the data (e.g. a panel 

structure) have to be tested for and taken into account. In brief, this section did not 

introduce common time series models but looked at some of the basic concepts under 

their bonnet to make the link with R/S analysis in the next section.  

  

                                                
23 A substantial part of the research w.r.t. technical analysis is essentially based on 
autocorrelation of stock prices - e.g. momentum analysis, price reversals, moving averages 
(ARMA) models and patterns, etc. The research favoring the efficient market hypothesis (cf. 
1.4.2) then mostly comes down to providing evidence against significant autocorrelation in 
return series (i.e. a random walk) using the tests mentioned above. 
 
24 Remark that researchers have tried to integrate this long memory in these autocorrelation-
based models (ARIMA models) using the concept of fractional orders of integration in ARFIMA 
models (Granger and Joyeux, 1980; Hosking, 1984). These are, in fact, the discrete versions of 
their continuous counterpart fBM (cf. infra). Although beyond the scope of this dissertation, it 
can be shown that this fractional order of integration is closely linked to H. 
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2.3 Hurst exponents: rescaled-range analysis and long memory 
 

 

In Egypt, Britain’s former colony, hydrologist Harold Edwin Hurst (1880-1978) was 

tasked to come up with an answer to the following critical question: “What are the ideal 

dimensions of a dam in the Nile?” Hurst studied numerous time series on water levels 

(Hurst, 1952) in order to strike a good balance for the following trade-off. If you build 

it too high, you waste huge amounts of resources; whereas if you build it too low, 

flooding can lead to huge human and economic disasters. For an anecdotic account of 

the story, see Mandelbrot and Hudson (2010). 

 

Whilst doing extensive quantitative analysis, Hurst recognized a lot of variability in the 

levels, where years of large changes of either sign - extreme droughts or flooding - 

tended to follow each other. The problem boiled down to how one could model this 

variability and come up with measures to describe the unpredictability. What is the 

level of persistence or anti-persistence in the water level data? This was very relevant 

for the dam issue since the level of anti-persistence or unpredictability in the water 

levels directly relates to the need for ‘overdimensioning’ or safety buffers in terms of 

the dam’s dimensionality (Hurst, 1956). The reader will probably recognize that the 

previous problem is a similar trade-off to market risk and capital requirements at 

financial institutions, with the water levels as PnL and the dam’s dimensions as a capital 

buffer. Borrowing from Hurst’s work, how can we model the persistence versus anti-

persistence of financial time series? 

 

The answer is rescaled-range analysis (or R/S analysis). It was initially developed by 

Hurst and later rediscovered by Mandelbrot (Mandelbrot, 2002). It tries to come up 

with a measure for the persistence of a time series in another way then just regressing 

the water level on lagged values (𝜌). R/S analysis uses a power law instead: how does 

the rescaled range behave for different scales? 
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Figure 6 illustrates the idea. Say N is the size of the sample, and n is the size of the 

intervals at smaller timescales. We first calculate the mean for every interval: 

 

											𝑚𝑒𝑎𝑛T(𝑛) = 	 S
Æ
∑ 𝑋TÆ
TWS        for all k =⌊N/n	⌋ intervals (2.18) 

 

Then, we calculate the deviations Yi as a mean-adjusted time series: 

 

𝑌T(𝑛) = 𝑋T − 𝑚𝑒𝑎𝑛T(𝑛)      (2.19) 

 

Next, we sum the deviations as to get a series of cumulative deviation: 

 

					𝑦6(𝑛) 	= 	∑ 𝑌T(𝑛)6
TWS          for j = 1,…,n             (2.20) 

 

The range of the interval is then defined as the widest difference in the series of 

deviations: 

 

𝑅T(𝑛) = max	(𝑦S(𝑛), 𝑦X(𝑛),…, 𝑦Æ(𝑛)) − min�𝑦S(𝑛), 𝑦X(𝑛),…, 𝑦Æ(𝑛)�  (2.21) 

  

Figure 6: Boxes try to capture the behavior of the ranges for 
different timescales of the A9P stock 
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The scale of each of the intervals is then defined as their standard deviations: 

 

𝑆T(𝑛) = 	qS
6
∑ (𝑋6 − 𝑚𝑒𝑎𝑛T(𝑛))²f
6WS     (2.22) 

for every interval of size n. 

The rescaled range of an interval is defined as: 

 

𝑅T(𝑛)/ 𝑆T(𝑛)       (2.23) 

 

The total rescaled range corresponding to an interval size of n is: 

 

𝑅/𝑆 (𝑛) = S
�
∑ ��(Æ)

Ç�(Æ)
	�

;WS 	𝑤𝑖𝑡ℎ	𝑘 = ⌊N/n	⌋    (2.24) 

 

Now, the Hurst exponent (H) is derived from the following power law: 

 

𝐻 = 	 ���	(�/Ç(Æ))
���	(Æ)

      (2.25) 

 

Practically, H is therefore estimated from a linear regression fit in the log-log plot25 of 

R/S for different values for n.  

 

Notice the similarities with fractional dimensions: the timescale relates to the rescaled 

range through a power law with a fixed exponent H. Instead of comparing the covered 

distance with the time elapsed, we compare the changing variance with the smaller 

and smaller time steps. Hence, we expect an intimate relationship for self-affine time 

series where fractional dimensions need not to be approximated. Notice that even if 

the underlying process is not a pure fractal, like stock prices, there is no need for an 

algorithm that approximates H, since H can be calculated directly using its definition. 

However, the fit in the log-log plot will then not be perfect, which suggest that stock 

markets are never perfectly self-similar. Again, this power law rationale is relatively 

                                                
25 Remark the similarities with the previous sections. To quote Jim Gatheral: “It’s the one thing 
we always get in econophysics papers: straight lines on a log-log plot.” (Gatheral, 2017). 
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easy to implement in Python and some sample code is available on GitHub. An example 

of an estimation of H for the US Finance performance index (H=0.4295) is given in 

Figure 7.   

Mandelbrot proved that for self-affine processes, the local properties are reflected in 

the global ones, resulting in the celebrated relationship D+H=n+1 between fractal 

dimension D and Hurst exponent H for a self-affine surface in n-dimensional space 

(Mandelbrot, 1985). Therefore, for one-dimensional financial time series (e.g. the 

BEL20 index over time) with self-affine statistical properties we can say H ≈ 2 – D. 

Figure 7: An R/S analysis for the US Finance performance index 
(H=0.4295) 

Figure 8: The estimation of H for processes with D equal to 1.9, 1.1 and 1.5 (BM) respectively 
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The above simulations (see Fig. 8) of D=1.9, D=1.1 and D=1.5 sample data in Python 

yields some pretty robust estimates of H in terms of the H = 2-D relationship.  

So far, we have not really delved into the meaning of H. The box below explains the 

most important implications of this exponent. Since one-dimensional data can have a 

fractional dimension between 1 and 2, a Hurst exponent is a number ranging from 0 

to 1, with the following characteristics: 

 

 

As we discussed before and is displayed in the box above, Brownian motion is the case 

where the level of mean reversion and autocorrelation level each other out. There is no 

predictability in terms of a tendency to move towards a long-term equilibrium mean, 

nor is there a tendency to trend26. This corresponds with the H=0.5 case. This case 

corresponds to the panel on the right-hand-side in Figure 827. 

 

The careful reader now probably wonders why we are in need of H if, according to the 

box, H exactly models these mean reverting (negatively correlated returns) or trending 

                                                
26 However, there might be a stochastic trend or drift, but this is by definition stochastic and not 
deterministic. This means that, similar to the BEL20 example in Fig. 5, this tendency might break 
down at any point. There is no expected autocorrelation in returns, but by pure chance (hence 
stochastic) there might be periods with continuation. 
 
27 Again, notice the similarities with the plots for D in 2.1.1. 

R/S and persistence 
 
0 < H < 0,5      Anti-persistent series: 

     A rough, ‘wildly random’ series with mean-reversion features and   
     negative autocorrelation in returns 

 
H = 0,5            Brownian motion:  

    Archetypical assumption in finance, no correlation with past    
    returns (independence) and a martingale (expected deviation  
    is zero with normal noise) 

 
0,5 < H < 1     Persistent series: 

    Trending behavior, smoother series or ‘milder randomness’ and  
    positive autocorrelation in returns 
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(positively correlated returns) properties of our time series. The answer lies in the 

concept of long memory. If our R/S analysis leads to H>0.5 (<0.5), we are more likely 

to find positive (negative) autocorrelation following the methodologies in 2.2. 

However, the opposite is not necessarily true. A series can be both mean reverting and 

persistent at the same time according to its long memory parameter. The difference lies 

in the fact that although first lags might not be positively or negatively correlated in 

the frameworks of 2.2, a more complex non-linear relationship between St and S at 

multiple lags can be present. This is what H measures: Given the persistence in the past 

n prices, what is the likelihood that the trend visible in these n prices will persist in the 

next n observations? This is completely different in nature from autocorrelation that can 

be found in the most recent p lags28. This type of persistence can thus only be measured 

by non-linear methods29. In other words, long memory implies that relationships exist 

between any two observations, depending on this measure H. Both observations can be 

many lags away from each other, and recent lags could nevertheless be insignificantly 

correlated. 

To put it briefly, long memory implies long range relationships between prices and is 

closely related to the previously described measure of roughness, the fractional 

dimension. 

 

Does this analysis imply that Brownian motion is a fractal? Indeed, just imagine we go 

from the SDE notation to an implementation in code where we model actual price 

moves for actual time intervals. If we rewrite the equations from 1.6 into a discrete 

form, it does not matter for what size of time interval we define the stochastic process. 

We can do this straightforwardly if we dilate the measures of mean (typically close to 

zero) and volatility (with √𝑇) with time. Therefore, zooming in on this Brownian 

motion, the statistical properties for a process simulated per month, per day or per 

                                                
28 An ARMA process will never use autoregressive terms of e.g. 50 observations away and skip 
more recent intermediate terms to capture long memory. It will only include terms up till a 
certain lag that is still significant. This is in clear contrast with long memory. However, 
remember the ARFIMA models of footnote 24, which try to leapfrog this issue by using a 
fractional order of integration.  
 
29 Id est R/S analysis, based on a power law, in contrast to covariance analysis, based on 
Pearson	𝜌. 
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minute would be the same. The self-similarity that we find will not be as visually 

attractive like other famous fractals, but the graph would be statistically self-similar.  

This finding is consistent with the fact that even seasoned chartists cannot tell what the 

timescale of a chart is if you do not tell them what the scale of the price is. Obviously, 

the changes will be bigger in magnitude for larger time steps as is implied in the 

increasing annualized volatility30. However, the overall ‘look’ and raggedness of the 

chart is completely the same. This further implies that the roughness or complexity of 

the price process is equal at every timescale. Remark that Mandelbrot’s most concise 

definition of a fractal focuses exactly on this property of scale-invariant complexity: “a 

fractal is a shape of which the complexity is constant at every scale”. The aim of this 

chapter is exactly to do this: measure complexity, see whether this scaling of time and 

variance is significantly different from ½ and whether this deviation is robust over 

sectors and geographies. We will provide first estimations for fractional dimensions and 

Hurst exponents of the data set in 2.5 and use those insights for our risk measure in 

chapter 4. 

 
 

2.5 Fractal dimensions and Hurst exponents in financial markets: 
some empirical results 

 

Before making the link with fractional Brownian motion (fBM), let us first consider 

some empirical results for the fractional dimensions and Hurst exponents of the price 

series in the data set. Is Brownian motion a realistic assumption for the data? If not, 

what are more realistic estimates for D and H? We find good fits for the log-log plots 

of the aggregate indices (Finance, Technology, Utilities, Telecommunications, 

Consumer Services, Health Care, Consumer Goods, Industrials, Basic Materials and Oil 

& Gas) of the 11 countries (Belgium, Canada, France, Germany, Italy, Japan, 

Netherlands, Sweden, Switzerland, United Kingdom and the United States). Let us first 

zoom in on these estimates and discuss them, before calculating the roughness on 

individual tickers in chapter 4. 

                                                
30 This corresponds to the ‘accepted wisdom’ that volatility scales for larger time steps with a 
scaling factor of ½ (under the assumption of independence, as we remember from the 
discussion at the end of page 19). 



 
 

54 
 
 

 

From the above results for 6 sample indices in Figure 9, we can conclude that the 

scaling of rescaled range and interval size indeed appears to hold quite nicely for the 

indices, with H equal to 0.4295, 0.4201, 0.5574, 0.5270, 0.4529 and 0.3417 for US 

Finance, Canadian Industrials,  Belgian Industrials, Italian Technology, Japanese 

Consumer Services and Swedish Consumer Goods respectively. Below, the distribution 

of H for the 110 indices is depicted in Figure 10: 

 

Figure 9:  Six sample log-log plots from the data set 

Figure 10: The distribution of H for all 110 indices 



 
 

55 
 
 

These are some pretty important results. First and foremost, we find that the Brownian 

motion case of H=0.50 is not consistent with our data. More precisely, ½ is just a 

special case and, naturally, H has a distribution rather than a value. Overall, the 

roughness of the indices is higher than assumed in a Gaussian model, resulting in lower 

Hurst exponents. Furthermore, the observed range in H (also see Tables 5 and 6 below) 

is too large to say that these deviations are due to noise in the estimators. We conclude 

that the roughness of a real-world price series is somewhere between 0.35 and 0.60, 

with most of the probability lying between 0.40 and 0.50. 

 

Table 5: The 5 indices with the highest measured roughness (Low H) 

Country Industry Ticker Hurst exponent 

Japan Telecom TELCMJP 0.331955 

Switzerland Consumer Goods CNSMGSW 0.341743 

Netherlands Utilities UTILSNL 0.357753 

USA Consumer Goods CNSMGUS 0.357834 

USA Consumer Services CNSMSUS 0.363426 

    

 

 

Table 6: The 5 indices with the lowest measured roughness (High H) 

Country Industry Ticker Hurst exponent 

Canada Healthcare HLTHCCN 0.630145 

Switzerland Utilities UTILSSW 0.591553 

Netherlands Healthcare HLTHCNL 0.567236 

Netherlands Telecom TELCMNL 0.563048 

Belgium Industrials INDUSBG 0.557427 

    

 

Some of the most remarkable deviations are displayed above. For instance, American 

and Swiss volatile indices like Consumer Goods and Consumer Services result in more 

ragged charts with a roughness of approximately 0.35. The most persistent indices can 

be found in Canada, with Healthcare leading with a Hurst exponent of 0.63. A more 
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visual representation of these first calculations of H for all the countries and aggregate 

indices are depicted in the heatmaps below (Figure 11). In addition, the index 

performance (as a return multiple over the total time window) is shown.  

 

These heatmaps convey a lot of significant information. Firstly, some extreme deviations 

from H=0.5 can be found. For instance, in Anglo-Saxon countries (US/UK) and Sweden, 

an overall brighter orange is observed compared to the other geographies. These first 

markets are thus found to be more rough than the latter markets. In terms of industries, 

Consumer Goods, Consumer Services and Telecom seem to be brighter than average. 

This might be due to more nervousness on these fast-paced markets. Healthcare is a 

special case with both very smooth (Canada, The Netherlands) and very rough 

Figure 11: Performance (upper panel) and H (lower panel) heatmaps 
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(Germany, Sweden, Switzerland & UK) indices. Given recent trends, these idiosyncratic 

country effects can be explained by individual pharmaceutical companies undertaking 

M&A activities that do not affect the overall industry but, because of their 

disproportional weights in the local index, induce sudden changes (and thus additional 

roughness or continuity) in the country index. The total country average of the H 

exponent is shown below in Figure 12. 

Upon critical inspection of both panels in Figure 11, we find no clear-cut relationship 

between roughness and returns. This is exemplified by the UK and Dutch Technologies 

indices, two of the indices with the biggest returns, whose measured roughnesses are 

not remarkable. Rough markets first seem to have higher expected returns (UK, US & 

Sweden), but these conjectures are hard to corroborate based on the above evidence31. 

Moreover, we see that abysmal returns like the Swiss Utilities have a very smooth chart.  

All things considered, markets can go up in a rough fashion and go down smoothly, or 

the other way around.  

We thus conclude that the overall returns are not linked to the roughness of the index. 

However, the scatteredness of the return time series is linked with roughness, as 

roughness essentially measures the dispersion of prices for smaller and smaller time 

scales. We will delve into the link between roughness and volatility in the next section. 

                                                
31 Neither did the numbers imply any significant correlations, but I preferred to let the pictures 
talk instead of crosstables. 

Figure 12: H index and clear country differences 

US/CAN EU JP 
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Other useful visualizations of the distribution of H are boxplots. These plots below seem 

to confirm our view that was shaped by the heatmaps. We clearly notice that H, as well 

as its dispersion, differs across countries and industries.  

 

We already provided evidence that Consumer Goods, Consumer Services and Telecom 

have the most occurrences of a low H and Figure 13 reaffirms this. We notice that 

Utilities also has some remarkably low outliers (e.g. Dutch Utilities, H = 0.36). 

Moreover, we can see that indeed Healthcare is a rather idiosyncratic industry with a 

high spread of values and a low mean for H. Consequently, Healthcare has together 

with Telecom the lowest expected H. Interestingly, the financial stocks have an unusual 

low spread for H, possibly meaning that they trade with the same roughness. 

Figure 14: Boxplots confirm clear industry differences for H and its spread 

Figure 13: Boxplots also confirm our country view on H 
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In terms of geographies, Figure 14 reasserts our view that Anglo-Saxon countries (US 

& UK), Sweden and Switzerland have the roughest markets. However, country effects 

should be nuanced from the point of view that the high spread of H for most countries 

implies that large deviations from BM can occur anywhere.  

 

To conclude this rather pictorial part of the dissertation, let us also consider a similar 

heatmap for the Higuchi fractional dimension. Although it is closely linked to H and 

should therefore lead to similar conclusions, Higuchi’s D is calculated with another 

approximating algorithm (cf. 2.1.1.1) and is therefore expected to be slightly different. 

 

 

 

Recall that a low H should result in a high D, since H ≈ 2 – D. We could argue that the 

typical grouping of the US, UK and Sweden still holds for D. However, Switzerland 

shows some completely different results. From the heatmap and boxplot of Switzerland 

we can see that the country has both outliers with a very high (≈0.60) and very low 

(≈0.35) Hurst exponent. From the fractional dimension we would expect values 

between 1.4 and 1.65. Rather, we see that the special cases have smoother Ds than 

expected, i.e. way smaller than 1.6. This could potentially mean that the used 

algorithms for fractional dimension have a bias towards picking a D that is too smooth, 

compared to the algorithm for H. However, France is now showing rougher figures 

than expected so this potential bias cannot be accounted for straightforwardly.  

Figure 15: Higuchi D – Convergent conclusions, though not identical 
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Of course, it has to be said that H is also a best fit in the log-log plot.  It is therefore not 

an absolute number either, but an approximation. In addition, the formula theoretically 

only holds for self-affine processes with infinite complexity, while our data is at most 

an approximation of statistical self-similarity with finite complexity (cf. supra). 

In summary and as a last conclusion of our empirical analysis, the ‘D approach’ towards 

quantifying roughness yields convergent conclusions with the ‘H approach’, but they are 

not identical. Although this is probably due to the different approximating algorithms 

and the fact that we do not have perfect fractals, the real reason is still ambiguous. 

 

2.6 Fractional Brownian motions 
 
In the previous section, we concluded that the roughness of an arbitrary stock in our 

horizon is not consistent with the Brownian case. To recap briefly, we said that 

Brownian motion, the random walk with infinitesimal time steps, is the case where we 

have no predictive power from either a certain level of autocorrelation, nor some 

gravity or degree of mean reversion. We explained Hurst modeled exactly this property 

in a more general way than linear autocorrelations, i.e. we look at long memory which 

is based on a power law instead of rho-based autoregressions. Hurst ranged from zero 

to unity, with ½ corresponding to the Brownian case. We said fractional dimensions of 

the considered time series were between 1 and 2 depending on the raggedness of the 

curve, so that 1.5 corresponded to BM. Additionally, from chapter 1 we know that the 

Brownian case is inextricably linked with a Gaussian view of the world. In this regard, 

consider the following random walk for illustration purposes: 

 

𝑆6�S = 𝑆6 +	𝜀6						𝜀~𝑁(0, σX)    (2.26) 

 

where the price of tomorrow is the price of today where we add a random deviation 

with mean zero. In other words, 𝑑𝑆6	is just Gaussian noise with zero expectation and 

volatility σX. The returns are thus serially uncorrelated Gaussian increments. This 

standard definition of a random walk therefore has the Markov property, i.e. it has no 

memory.  This corresponds to no expected autocorrelation between increments 𝜀6 and 
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𝜀×, t>s. However, prices have an observed autocorrelation between observations at t 

and s, t>s 32: 

E[𝑆(𝑡)𝑆(𝑠)] = 	σXs     (2.27) 

 

Deliberately, we avoided formal proof or a mathematical rigorous explanation for D 

and H of this process, since it requires overly sophisticated mathematics for the aim of 

this section33. The only aim is to provide intuition with regard to the link between 

roughness and the assumptions we heavily criticized in chapter 1. One elegant angle 

to see this, and which is of importance for this dissertation, is to regard these figures 

from the fractional Brownian motion generalization of BM. Fractional Brownian motion 

(Mandelbrot and Van Ness, 1968) has a covariance function, t>s:  

 

E[𝑆Ú(𝑡) 𝑆Ú(𝑠)] =
H�

X
(	|𝑡|XÚ + |s|XÚ − |𝑡 − 𝑠|XÚ)    (2.28) 

 

where we generalize our Brownian motion for a covariance (‘memory’) function that is 

a function of H. In a fBM model, the autocorrelation between observations for an 

arbitrary shift 𝑡 − 𝑠 is the expression above (t>s). Indeed, one can easily check that if 

we plug in H=0.5 into the covariance function, we find ordinary BM, such that BM is 

just a special case of fBM with no long memory.  

Formal proof requires solving a complex integral34 (Mandelbrot, 2002) and is beyond 

the scope of this dissertation, but it should be intuitively clear that the persistence in 

the series goes up with the Hurst exponent H. Indeed, rescaled range analysis enables 

us to model the memory feature of financial time series by looking at the roughness of 

                                                
32 Or generally E[𝑆(𝑡)𝑆(𝑠)] = 	σX	min(t, s). This can easily be seen from equation 2.26. 
Backward iterating yields 𝑆6 = 𝑆Q +	∑ 𝜀6DT6DS

TWQ . The last term is the stochastic trend, such that 
cov(𝑆(𝑡)𝑆(𝑠))=E(𝜀6+. . . +𝜀S)(𝜀×+. . . +𝜀S))=E(𝜀×X+. . . +𝜀SX) = sσX. Thus, returns are 
uncorrelated and prices are correlated because of the stochastic trend only. Therefore, in line 
with the discussion in footnote 26, BM has no memory. 
33 As this chapter only provides an introduction to fractals and their link with finance, we only 
included sample plots to prove this (Figure 3 and 8). The interested reader with a more 
mathematical background is referred to Mandelbrot (2013). 
34 Mandelbrot replaced the Riemann–Liouville fractional integral proposed by Lévy by a Weyl 
integral. White noise, the Gaussian increments 𝑑𝑆6 (the 𝜀6		in 2.26), are fractionally integrated 
using the factor (𝑡 − 𝑠)ÚDS/X in which we recognize the autocovariance function of BM. Notice 
the link with ARFIMA models in footnote 24. 
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the data. We leapfrog the econometric approaches of 1.6 that try to find linear 

comovements in an autoregressive scheme. Recall that these methods often provided 

evidence for the EMH and the application of BM for risk management purposes (1.4.2 

and 2.2). Now we are able to go beyond this linear approach starting from R/S analysis. 

The worthwhileness of this approach stems from the observation that the roughness of 

BM is not consistent with real stock data (cf. the last section). This thus implies that 

there is long memory present in our stock price data. 

The previous statement can be best understood from the discussion we had about the 

scaling property of Brownian increments with the square root of time in 1.6:  

 

𝑑𝑆	~	√𝑑𝑡	𝜀       (2.29) 

 

We said that this expression is only valid if there is no memory (the Markov property), 

i.e. H = 0.5. Since we now have memory in the fBM case, we expect a different 

relationship. We can start from the same perspective as BM: the distance traveled is 

proportional to the power H of the time elapsed. However, with fBM we say that the 

power is not necessarily ½, but can be any H (Mandelbrot, 2002; Velasquez, 2010): 

 

𝑑𝑆Ú	~	𝑑𝑡Ú	𝜀       (2.30) 

 

This is yet another example of a scaling law: the quantity S (a stock price, interest rate, 

volatility, etc.) has increments that are proportional with the Hth power of the size of 

the time step (the scale).  For instance, this means that a 10-daily VaR can be 

approximated by 10Ú times the daily VaR, where H is the roughness of the time series 

of the daily VaR. This is in clear contrast to the Basel-compliant √𝑇-rule. BIS regulation 

basically implies that the time structure of VaR is the root of time. BIS capital adequacy 

rules stipulate that banks should operate with a holding period of two weeks (10 days), 

which implies the application of √10 times daily VaR35. Again, this means that BIS 

                                                
35 Basel refers to daily VaR as DEAR (Daily Earnings At Risk). The internal models framework 
of the BIS capital regulations (cf. 1.1) sets the minimum market risk capital requirement to be 
the larger of (1)  √10 * Previous DEAR or (2) Multiplier * √10	∗Average DEAR (Allen et al., 
2009).  
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assumes that there is no memory in consecutive losses. This is in clear contrast with 

what we observe in bad trading periods where losses are accumulated. Then, the H of 

the daily VaR time series becomes larger and the losses over one day should be dilated 

by a larger factor if we try to use them to predict what we are losing over multiple days. 

We will come back to this key insight of roughness for VaR in 5.2.  

Another more common example is when the quantity is volatility, where H measures 

the roughness of the volatility process. Gaussian models imply a term structure √𝑇 for 

volatility (recall the discussion on annualized vol in chapter 1), yielding results that are 

not consistent with realistic volatility patterns. 

 

The main literature using fBM for financial applications is the so-called rough volatility 

literature. Rough volatility uses fBM for the volatility process rather than the stock 

process. Hence, it tries to measure the long memory in the volatility process. Gatheral, 

Jaisson and Rosenbaum (Gatheral et al., 2014) showed that logvolatility behaves like a 

fractional Brownian Motion with H of order 0.1. Recall the Heston model in 1.6: 

 

    (2.31) 

(2.32) 

 

Gatheral et al. found a remarkably robust monofractal scaling property for the time 

series of volatility: 

log(𝜎6�Ü) − log	(𝜎6) = 𝜗(𝐵6�ÜÚ − 𝐵6Ú)    (2.33) 
 

In other words, the logincrements in volatility over a shift 𝛿 is proportional with the 

increments of a fBM process, with a proportionality constant 𝜗. Gatheral and 

Rosenbaum showed that this relationship holds for all 21 equity indices in the Oxford-

Man database, Bund futures, Crude Oil futures and Gold futures, with an H in the order 

of 0.1 (Gatheral et al., 2018). This allows us to write down the following stochastic 

volatility model: 

(2.34) 

(2.35) 

(2.36) 

𝑑𝑣6 = 𝜅(𝜃 − 𝑣6)𝑑𝑡 + 𝜉s𝑣6𝑑𝑊X 

𝑑𝑆6 = 𝜇𝑆6𝑑𝑡 + s𝑣6𝑆6𝑑𝑊X 

𝑑𝑆6 = s𝑣6𝑆6𝑑𝑊 

𝑑𝑋6 = 𝜗𝑑𝐵Ú − 𝛼(𝑋6 − 𝑚)𝑑𝑡 

log�s𝑣6� 	= 	𝑋6 
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Lo and behold, the rough fractional stochastic volatility (RFSV) model, which looks like 

a rough version of the Heston model in Eq. 2.31 and 2.32. As its name suggests RFSV 

replaces ‘Brownian, Markovian stochastic vol’, by ‘rough, fractional stochastic vol’. In the 

first equation (Eq. 2.34), we recognize the stochasticity term for the change in S, which 

we have seen in all the previous SDEs. The second and third equation just rewrite the 

monofractal property (Eq. 2.33) above. Note that the 𝛼(𝑋6 − 𝑚) term is a correction 

term that drives the logvolatility to its long-term level, much like the Ornstein-

Uhlenbeck process discussed earlier. That is why 𝑋6 in its complete form (𝛼 ≠ 0) is 

called a fractional Ornstein-Uhlenbeck process (fOU). This model is applied for 

enhancing option pricing in, inter alia, the rough Bergomi (rBergomi) model. This is a 

slightly simplified version of the RFSV model with special merit in fitting the observed 

volatility surface. “The rBergomi model fits the SPX volatility markedly better than 

conventional Markovian stochastic volatility models, and with fewer parameters” 

according to Bayer et al. (2016). Heston models, much like SABR, Hull-White and other 

stochastic volatility models, were already able to model the curvature of the surface by 

looking at the volatility of volatility (a second order model of vol), but RFSV has special 

merit in deriving even more realistic smiles (Bayer et al., 2016; Gatheral et al., 2018; 

Jacquier et al., 2018). The core difference is thus to replace Markovian models by long 

memory models, using the measured roughness of volatility. 

 

To reiterate my earlier point, the purpose of this section is to give the reader insight in 

how roughness is entering financial modeling at vast pace, not to confuse him with 

equations. My only aim is to provide intuition for the link between roughness and the 

assumptions in chapter 1. In that regard, the key take-away from the work of Gatheral 

and Rosenbaum, is that it proves that fractal-inspired scaling properties of financial 

time series are really measuring some underlying dynamics and fractals are not just ‘a 

cult applied to finance’. Moreover, the interest in rough volatility has invited researches 

to do empirical work on the implications of the changing roughness of volatility. This 

empirical work is particularly useful for this dissertation. Figure 16, for instance, shows 
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the roughness of the volatility process and its link with real-world events (Gatheral et 

al., 2018).  

This shows that (1) markets are rougher than most models (cf. 1.6) imply, (2) roughness 

changes over time and (3) roughness is highly correlated with real-world events (Figure 

16). That is why we will tap from their intuition and borrow some of these scaling 

properties for the combination of risk models in the next chapter. An obvious but crucial 

simplification is that this thesis considers the roughness of the price process and not 

the underlying volatility process. Though the scaling property (Eq. 2.33) and the 

observations in 2.5 are related (time-varying persistence in volatility may induce time-

varying anti-persistence in stock prices), they are fundamentally different processes. 

The intuition is therefore transversal, but the concepts cannot be used interchangeably.  

 

All things considered, there is a mathematical foundation (or at least intuition) that 

links the assumptions in the standard models to Hurst exponents and fractional 

dimensions. Some of the relationships that were found are remarkably robust. A first 

intuitive consequence of the previous paragraphs is that an assumed data generating 

process based on roughness (e.g. fBM) would yield more extreme VaR numbers if 

Figure 16: Gatheral et al. (2018) show that the roughness of the volatility process (𝛼 = 𝐻 − S
X
) 

is highly correlated with real-life events. When the persistence goes up, it is clearly linked to 
market turbulence like the 2008 Lehman bankruptcy, the 2010 Flash Crash, the 2011 Greek 
debt crisis and the 2016 Brexit vote. 
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volatility is higher or the smoothness of the volatility process is higher/the roughness of 

the price process is higher. Note that there is an ‘inverse property’ between the roughness 

of the price process and the roughness of the volatility process. Persistence in volatility 

occurs when we are in a so-called volatility cluster, when returns are more scattered 

and prices look more rough. Just keep the sample plots in 2.3 in mind. When H of the 

volatility process is decreasing, the volatility estimates look very rough. This is typically 

outside of the cluster, when vol is very anti-persistent. Consequently, this corresponds 

with more benign periods in the time series of the stock price, i.e. when the D and H of 

the price process will be indicative of a smoother period. 

The reader will by now understand that all these remarks imply that randomness is 

more than sigma, and this adds another dimension to the ‘uncontrollable element’ that 

is put into the model by the modeler. The methods in chapter 1 introduced volatility as 

only element of uncertainty, i.e. a Brownian noise term was multiplied with a 

(stochastic) sigma. Although these stochastic volatility models were designed explicitly 

to include persistence in the volatility process, we have concluded that they are not 

quite able to do so because of their dependence on linear autocorrelation. Indeed, 

GARCH is an autoregressive scheme that suffers from the same essential weaknesses as 

our common Gaussian models, since it is a memoryless volatility model. Although 

Heston, SABR, Hull-White, etc. all provide different approaches, they typically belong 

to the same ‘family’ of Markovian models36.  

Therefore, we can conclude that an additional element of uncertainty needs to be 

included: the roughness of the process. As we just extensively discussed, roughness is 

linked to volatility, the common perception of riskiness, but it is not quite the same.  

 

While realizing that the approach of this dissertation is ‘atheoretical’ in comparison 

with the work on RFSV, the intuition behind a roughness-based combination model for 

risk measures seemed to find support in this work. This is mainly because it shows that 

time-varying roughness is a variable that is both related to the underlying data 

generating process assumed in our models and a ‘contextual variable’ that correlates 

                                                
36 Again, this is only partly true since long memory features returns have, similarly to ARFIMA 
models, led to a set of FIGARCH models (fractionally integrated GARCH). However, the results 
are less convincing than rough volatility (Baillie et al., 1996; Gatheral et al., 2018) 
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with the dynamics in the underlying market. Although ML models (cf. the next chapter) 

might be seen by quant purists as brute force models, they are not necessarily doomed 

to be lesser mathematical models than explicit closed-form equations, not in the least 

in terms of performance. Admittedly, the set-up or internal structure of the model will 

be less transparent, but the nature of the model is not necessarily different. This 

corresponds to more recent trends in numerical and computational finance where the 

need for a solution is identified, as well as the means to get there (by using heavy 

computational power), but there is no need for a closed form solution. Therefore, I 

cannot mathematically prove that the combination proposed by the model is optimal, 

but I can show you the backtesting results. 

 

With all the previous remarks in mind, the goal of this thesis and what we will continue 

to do in the next chapters can now be summarized as follows:  

 

The backtesting framework of Kupiec and Christoffersen (Christoffersen, 2008; Kupiec, 

1995, 1999) will be explained in more detail in chapter 3. Introducing the backtesting 

measure into the model explains why the model is not necessarily going to 

underperform closed-form solutions based on roughness. This is because now we can 

do (2), i.e. define exceptions as explicit loss. However, this increases the perception of 

our risk measure as a black box. This pitfall will be discussed in due detail in the next 

chapters. 

This dissertation investigates the use of standard parametric and non-parametric 
approaches to estimate Value-at-risk (VaR) and combine them in a neural net with the 
purpose to:          
      

1. Reduce the overall bias of the methods by combining them (Inui, Kijama, Itano, 
(2003), Liu (2005)). 

2. Explicitly tell the machine - in the loss function - to learn a combination that 
minimizes the exceptions in financial loss (based on Kupiec, Christoffersen, 
1998). 

3. Investigate the use of fractal-inspired complexity measures for this 
combination, given the intimate relationship between fractional Brownian 
motion (fBM, Mandelbrot & Van Ness, 1968) and the generalization of standard 
assumptions in the classical models. 
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2.7 Conclusion 
 

 
“The art of asking questions is more fruitful than the art of finding solutions.” 

 
Georg Cantor 

 
 

We can conclude this chapter by saying that the intuitive concepts of the art of 

roughness and rough markets created a vast interest by quants and financial theorists 

to study the subject in recent years. I hope I was able to cherry-pick the most exciting 

ideas behind this art without being too mathematical37 nor giving the basic math, that 

was used in the code, short shrift.  

 

Recently, roughness has entered the equations through fractional Brownian motion. 

fBM is a generalization of BM, like fractional dimensions are a generalization of 

ordinary dimensions, and can possibly link the methods from chapter 1 to each other. 

All of these standard methods rely on a hypothetical data generating process as they 

are formalized by SDEs. In this chapter, we started very intuitively by reflecting about 

different types of predictability and eventually showed that this boiled down to all of 

these SDEs having an assumed roughness. The question is to what extent this roughness 

is consistent with the specific stock or market in question. That is why this dissertation 

starts from measuring this roughness before haphazardly applying any of the above 

methods without thinking about its appropriateness (recall the coast line analogy for 

predicting predictability). First estimates for these complexity measures for our data 

set were given in this chapter, where it seemed obvious that the diffusion model does 

not make a lot of sense for real-world markets.  

Because of all these remarks, roughness might serve as a simple and logical but 

powerful connector in a combination model. This realization, combined with the rapid 

                                                
37 It is very hard for a subject like this to focus on the main implications and not on the math, 
without giving the math short shrift. I know this chapter will probably sound technical for 
finance audiences and very heuristic for math audiences. However, the main ideas do not 
change when we refine the mathematics gradually, i.e. in further research. 
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development of machine learning techniques (see the next chapter for a primer on ML) 

that enable the modeler to make sense of huge realms of PnL data in a cheap and fast 

way, suggests that there might be a power in combination. Both in combining different 

methods for VaR, as well as combining fractal properties with a machine learning 

framework. The research question stated in the introduction now comes down to 

whether roughness can be an informative feature in a combination model, or whether this 

approach only contributes to spurious precision. To answer this question, we will focus 

on critically investigating the backtesting results of our different final models in chapter 

4. 
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Chapter 3 

What are Deep Neural Networks? 
 
 
 
3.1 A brief introduction to machine learning 
 
 

 
“Solving the right problem numerically beats solving the wrong problem analytically every time.” 

 
Richard Martin 

 
 
Because of (1) the explosion of data, (2) algorithmic advancements, (3) the availability 

of vast storage space and (4) the increase in computing power (Manyika, 2017), we 

have seen a proliferation of machine learning applications in finance and our daily lives 

over the last years. In order to better explain the concepts behind the used machine 

learning algorithms, I think this dissertation deserves a primer on ML.  How does a 

machine learn? A few basic concepts can help explain the design freedom one has in 

developing an ML model and can therefore help explain the motivation behind the 

modeling choices that were made. 

 

Machines learn by minimizing what the modeler defines as loss. Imagine a classic OLS 

regression. There we tell the machine to come up with weights for our feature variables 

that minimize the loss, i.e. the squared deviation of the predicted output with the real 

output. In general, this loss could be anything: least-squares, mean absolute errors, 

mean absolute percentage errors, mean squared logarithmic errors and more technical 

ones like binary cross-entropy, sparse categorical cross-entropy and so and so forth (for 

an overview see Vapnik, 1999). The machine translates the input features into an 

output as to minimize this measure of loss over time. This first design parameter gives 

us the opportunity to explicitly define an exception - a financial loss higher than 

predicted by the model - as loss. More exactly, we can now tell the machine this number 
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of exceptions should be consistent with the confidence level and the loss should 

increase as the number of exceptions diverges further from the theoretical number (see 

3.3). 

  

The machine minimizes the loss over different iterations or steps called epochs, using 

an optimizer algorithm. These algorithms are based on gradient descent (see Fig. 17), a 

mathematical technique using the gradient, i.e. the first partial derivatives vector, 

which shows in which direction the loss function decreases the fastest. This explains 

why the loss function should be differentiable. In plain English, the machine alters the 

weights of the model a little in each direction and looks at the response in loss. 

Subsequently, it chooses to change the weights in the next step in the direction where 

the impact on the loss function was the most significant decrease. It is the sort of hot-

and-cold game children like to play. There is no artificial intelligence behind machine 

learning, the machine only ‘knows’ in which direction it should move towards achieving 

a minimized loss function. The specific algorithms I considered were AdaGrad 

(Adaptive gradient algorithm), RMSprop (Root mean square propagation), Adam 

(Adaptive moment estimation), SGD (stochastic gradient descent), AdaDelta, AdaMax 

and Nadam  (for an overview see Ruder, 2016). These are all variants of gradient 

descent with their own merits and limitations. The power of genetic algorithms, a set 

of bio-inspired algorithms we will discuss in 3.4, is that they determine throughout the 

Figure 17: Minimizing loss using gradients  
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generations which algorithms work best for the data and loss function you are working 

with. 

 

The so-called hyperparameters the designer has to come up with are the learning rate 

and the number of epochs. The learning rate boils down to the size of the steps the 

machine takes. Large steps can bring you to a solution fast, but that solution might be 

suboptimal since the algorithm will jump from one side of the minimum to the other 

when it is close to it, not being precise enough to find the ‘real’ minimum. The number 

of steps or epochs is just the number of iterations you use to optimize the loss function. 

A large number might bring you closest to the optimum, but it may take an 

inconvenient amount of time to do this, or the machine may even time out before 

getting there. Other hyperparameters are, in the case of a DNN, the number of layers 

and the number of neurons per layer (cf. 3.2). 

 

 

3.2 What is a Deep Neural Network? 
 
 

 
 

A neural network is a mathematical function 𝑓, linking a vector X of input variables 𝑥T 

to an output variable 𝑌:   

𝑓:		𝑋 → 	𝑌       (3.1) 

 

The power of this set of models is that neural nets use so-called hidden layers where 

the input is connected by the weights 𝑤T and transformed by a special function called 

the activation function 𝐺. In these layers, complex sequences of essentially simple non-

linear transformations are performed. 

Neural network - a mathematical model or computational model based on biological 
neural networks. It consists of an interconnected group of artificial neurons and processes 
information using a connectionist approach to computation. In more practical terms, 
neural networks are nonlinear statistical data modeling tools used to characterize highly 
complex and convoluted relationships between inputs and outputs or to find correlation 
patterns in financial data (Sun et al., 2008).   
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Again, consider a standard regression model as an example. We use the input variables 

𝑋 and initialize the model by giving them arbitrary weights, as to explain 𝑌. Then we 

impose that the weights should minimize the sum of squares of deviations of the 

predicted Y with the real Y. Using a sample to do this, one could call this training the 

model. As a result, we have a model that gives weights to the input variables, as a linear 

transformation of the input, to explain the output variable. Naturally in a linear model, 

the coefficients are fully based on the Pearson correlation between 𝑋 and 𝑌 and their 

individual variances. In a typical regression framework, you only measure the linear 

comovement between the variables as to come up with the coefficients. Moreover, there 

is only one transformation of the input. We can now evolve this model into a neural 

network model.  

 

In the multilayered architecture of a DNN model (see Fig. 18), we have different types 

of layers: the input layer, the hidden layers and the output layer (Giudici, 2005) denoted 

by the three equations (3.2), (3.3) and (3.4) below. As is also clear in Fig. 19, input is 

transformed through sequences of transformations. Similar to the human brain, the 

most elementary computational unit is called a neuron (Bolland et al., 1998). These 

neurons are connected by the weights 𝑤T and activated by a function 𝐺, so that in 

essence (Sun et al., 2008): 

 

Figure 18: Comparing the monolayered regression model with the 
multilayered architecture of a DNN 
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𝑛� = 𝑤�,Q + ∑ 𝑤�,T𝑥TT∗
TWS      (3.2) 

𝑁� = 𝐺(𝑛�)       (3.3) 

𝑦 = 𝛾Q + ∑ 𝛾�𝑁��∗
�WS       (3.4) 

 

In words, the elementary mathematical functions transforming the input 𝑥T are the k 

neurons 𝑛� that give weights to the input features in the first layer. These neurons are 

then activated by an activation function 𝐺.   

Activation functions are the very essence of DNNs. They are the non-linear 

transformations that enable the model to learn non-linear relationships between the 

input and the output. They thus introduce more complexity into the model, but also 

increase their performance dramatically. Figure 19 shows that these functions can be 

seen as an additional layer of mathematical functions that activate neurons before they 

are given a weight, i.e. connected with the next layer.  Many breakthroughs in voice 

and image recognition can be explained by the fact that researchers solved the problem 

to separate non-linear sets of data by introducing activation functions in the model. 

Examples of activation functions are sigmoid functions, rectified linear units (relus), 

tanh, etc38. These functions are seemingly simple transformations of the data.  A relu 

takes any number as input and returns the same number if it is larger than zero and 

zero otherwise, much like the payoff of a call option. Sigmoid functions take a number 

between −∞	and +∞ and transform it into a number between -1 and 1. Alternatively, 

sigmoids are used to transform any number into one between 0 and 1, as to come up 

with a probability in logistic regressions. This is used for classification algorithms like 

voice and image recognition, and many more.   

Recall the opening quote: “Bottomless wonders spring from simple rules… which are 

repeated without end”39. Again, the nesting of seemingly simple transformations can 

                                                
38 For a comparison see DasGupta and Schnitger (1993) 
39 Although a lot remains unknown about the brain, chances are it is a fractal too. This might 
explain the existence of some applications in engineering where fractals meet neural networks 
(Castillo and Melin, 2002; Ryeu et al., 2001; Steeb, 1999). 



 
 

76 
 
 

deliver very interesting results since we are now able to model complex relationship by 

introducing non-linearities.  

 

In a fascinating online article with the title ‘Neural Networks, Manifolds, and Topology’ 

Christopher Olah from Google Brain explains the power of introducing non-linearities 

in a model using an original perspective: topology. Suppose you want to separate a 

dataset into two groups according to a label, say male or female, based on two known 

features that you will tell the machine, say height and weight. 

You could plot the two known features on the X and Y axis and see how these two 

groups behave (see Figure 20). In the example, we clearly see that the blue and the red 

dataset are not linearly separable if we only use X and Y. So how can activation 

functions help us out? The full story is rather involved in terms of mathematical and 

geometrical concepts and would take us too far40. The intuition, however, is that an ML 

model can learn an alternative representation of the dataset so that it is linearly 

separable. The model starts to transform the two datasets differently according to the 

feature we want to distill. Activation functions learn the best non-linear representation 

that enables the last layer to make a linear combination of the transformed data as to 

distinguish the two labels. In the words of Olah’s blog “Each layer stretches and squishes 

                                                
40 However, the paper itself is a must-read for anyone interested in how neural networks work 
and who has a basic understanding of math and topology. Olah (2014) is included in the 
references. 

Figure 19: Activation functions - Architecture 
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space, but it never cuts, breaks or folds it. Intuitively, we can see that it preserves the 

topological properties.” One’s mind boggles when you think about how involved these 

models get for multiple dimensions when using simple transformations that are 

repeated to a large extent. But why do we need these non-linear transformations? 

 

 

 

 

 

 

 

 

 

 

3.3 Why a DNN for our model? 
 

 
“All models are wrong, but some are useful.” 

 
George E.P. Box 

 

One could argue that the traditional methods (individually) have a very linear view on 

risk (also see 1.4.1). We typically decide on a static confidence level, which is 

dependent on the purpose of the calculation. This is done by the regulator (see BCBS 

III, 2017) for e.g. reporting or the calculation of capital requirements. On the other 

hand, hedge funds and other financial institutions can calibrate these statistical models 

on any confidence level they like for optimization purposes. The chosen (set of) 

distribution(s) is recalibrated over time but their nature stays the same. Examples are 

the standard z-scores, t-scores, etc. based on the predetermined confidence level. 

Furthermore, we notice that the recalibrated parameters (e.g. other distributional 

parameters like excess kurtosis for the degrees of freedom of a Student t, the shape of 

the GEVT,…) do not move a lot over time. Consequently, our main input for the 

Figure 20: “The hidden layer learns a representation so that the data is linearly 
separable” (Neural Networks, Manifolds, and Topology, Colah’s blog 2014) 
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eventual risk measure is volatility. Once we have decided on the previous elements, 

our eventual risk measure is some linear transformation of volatility. All these methods 

(except for a simple HS) essentially stretch out volatility in a linear fashion (cf. Figure 

22). 

 

 

If we had critically reflected about the selection of formulas that was given in Table 2, 

we could already have figured out that volatility is the most important variable in the 

equation, bar none. We already extensively elaborated on the dangers of variance 

myopia and a linear transformation of vol into risk measure. These linearities result in 

abrupt responses if the vol changes, which casts doubt on the reliability of the initial 

model. For instance, in the beginning of 2018 G-SIBs were announcing their trading 

risk tripling at their equity unit in less than one month because of surging volatility. 

Terms like volatility breakouts and correlation breakdowns to denote sudden 

pernicious impacts on financial models often boil down to high sigma-dependence. We 

should not be silly and stop using statistical sigma as our main definition of volatility 

or abandon our quests to improve stochastic volatility models (cf. 2.6). The point of 

repeating this critique in this section is, again, to probe more deeply into why it does 

not work. The reasons are plenty, but the blatant one is again that is too focused on a 

limited set of (static) assumptions.  

Figure 21: Some standard model estimations of bad quantiles moving over time – The estimated 
stochastic volatility is linearly stretched out 
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In this regard, a combination model could potentially give more robust estimates, not 

only by (1) combining different approaches and altering their weights over time, but 

also simply by (2) introducing non-linearities.  

(1) refers to the fact that we are combining different VaRs into one risk measure, which 

is in essence no different from a SRM. Any combination of VaRs that adheres to the 

three conditions summed up in 1.10 can be seen as a SRM and will be coherent as long 

as we take enough projected VaRs into account. This means that these projected losses, 

or scenarios with corresponding probabilities, need to be informative enough to satisfy 

the three conditions. An additional motivation, next to coherence, is that the weights 

adapt over time based on a learning process. Static assumptions are implied in the 

features, but the combination approach with dynamic weights makes the model more 

adaptive and responsive. One could argue that in light of the discussion on the 

efficiency of markets, and the distributional properties this implies for VaR, we now 

evolve towards an adaptive market view (see 5.2).  

(2) refers to the fact that the world does not work in a linear way. Figures 22 and 23 

compare the linear thinking of the standard models with an ML framework. Much like 

Colah’s example, the ‘real VaR’ will probably not lie somewhere in the space of all linear 

combinations of the VaRs that go into the model. If that would be true, a simple 

regression framework could do the job from this linear perspective (i.e. apart from the 

bespoke loss function, etc.).  

 

 

 
 

Figure 22: Traditional models 
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Once we agree on the fact that non-linearities have a lot to offer for our problem, we 

can choose to use either raw PnL data (Sun et al., 2008) or a combination of standard 

VaR approaches (Liu, 2005) as input for our model. It is clear by now that we will 

combine different ‘instantaneous’ VaR estimates in a DNN to predict the magnitude of 

a bad quantile of the PnL consistent with the proposed confidence level cl. One 

important motivation for this, is that the alternative approaches require a lot of lagged 

PnL or VaR data as features. This means that the ML model is basically looking for 

patterns in the past n observations of the PnL/VaR, where n stands for the number of 

included lags. Sun et al. (2008) uses a lag of 10. This could be seen as a VAR41 model 

of x VaRs with lag n=10, where the estimation is done through a DNN instead of 

classical methods. Anyone familiar with these models will know that a lag of 10 very 

quickly erodes the power of any of the tests that is done on the parameters of the 

model42. The latter is caused by the detrimental impact on the individual weights of 

having a large lag, i.e. for practical lag lengths it conflicts with the principle of 

parsimony.  

                                                
41 A Vector Auto-Regression (VAR) model is another standard econometric time series model 
for multi-variate analysis. It looks for autoregressive patterns in the history of the variables and 
their common past. Again emphasizing autoregressive, it uses linear correlation for its 
estimation. The point of mentioning this kind of model is that the approach of Sun et al. (2008) 
is similar, as they use a lag of 10 for their different approaches, though using a DNN. 
42 As the degrees of freedom are consumed by the estimation of n times x coefficients. 

Figure 23: ML models – Introducing non-linearities is no quick-fix, but it is 
a step in the right direction 
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Therefore, we start from the instantaneous VaR at any time t and include the measures 

of roughness as explicit features to the model (see Chapter 4 for specific details). The 

rationale behind this choice should be clear by now, but Figure 24 below can make it 

more intuitive. The research question formulated in the introduction now comes down 

to testing whether roughness measures are informative. Roughness could be some sort 

of a missing link in a VaR combination model given the fallacies of many of the 

underlying assumptions of the standard models that were discussed in Chapter 1, and 

their link with the fBM generalization of the underlying stochastic data generating 

process. For instance, we could argue that Gaussian methods should get lower weights 

as the roughness increases, i.e. the Hurst exponent drops way below the Brownian 0.5 

case. More aggressive versus conservative distributions might get a weight according 

to the measured deviation from the standard assumption of H = 0.5, as is shown in the 

figures below. Of course, this approach is heuristic and atheoretical in nature, but there 

are good arguments for the analogy on which the model hinges. 

 

Figure 24: ML combination models – Roughness as a missing link? 
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So why might an ML model outperform our classical statistical model we started this 

chapter with? In the words of Sun, Rachev, Chen and Fabozzi: 

 

“Why do the traditional time series models dramatically underperform the NN model? 

Standard time series models require the residuals to follow a normal distribution. 

Second, time series models do not have a memory while the NN model can memorize 

the [nonlinear] dynamics between the features and save it with hidden layers. The 

normal distribution for a random variable cannot capture the memory effect and the 

accuracy is reduced. Third, the NN model allows us to use very accurate computing 

methods, i.e. a recursive method referred to as backpropagation, while the typical 

maximum likelihood estimation for time series models is less accurate in its applicable 

algorithm.” 

 
3.4 Genetic algorithms 

 
 

“To breed or not to breed, that is the question.” 
 

 

It may not come as a surprise that building an ML model requires both science and art.  

One should be able to program the model, define the right loss function, etc. from some 

scientific motivation. However, there is no one single prescription on how to come up 

with the hyperparameters. Like it was argued in 3.1, the best hyperparameters depend 

on the data and the loss function one is working with. The only certainty is what we 

want to obtain: low loss, high accuracy without overfitting the sample data, and in 

terms of this dissertation: exceptions that are consistent with the confidence level. To 

obtain this goal by tuning the hyperparameters we have two options: brute force trial 

and error or genetic algorithms (GA) (see Carr, 2014). With brute force methods, you 

try every (sensible) combination of hyperparameters and wait a lifetime until the 

program spits out the best model. Genetic algorithms provide a much better and faster 

way. Say we start our brute force with a set of models with random hyperparameters. 

Why would we, in a next step, try models that have slightly different hyperparameters 
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from models that were least accurate? Why would we not only slightly alter the 

hyperparameters of the models that are performing best instead? This, in a brief, 

summarizes the reasoning behind GA. 

 

These steps are implemented in the code, where random neural nets are made from 
combinations of: 
 

§ 2, 4, 8, 16, 32, 64, 128, 256 or 512 neurons per layer 

§ 1, 2, 3 or 4 layers 

§ Relu, elu, tanh or sigmoid activation 

§ RMSprop, Adam, SGD, AdaGrad, AdaDelta, AdaMax or Nadam optimization 

 

The algorithms are designed such that a bad parameter quickly disappears from the 

decision tree (or ‘family tree’) that the code goes through. Of course, the code always 

uses the same bespoke loss function, features and labels. The number of generations 

and number of models in the initial population is a choice that primarily hinges on the 

available computing power43.  

                                                
43 This can be adapted in the form sheet the code starts from. The estimations shown in this 
document are based on 10 generations and an initial population of 10 networks (again, see 
emiellemahieu/AOR on GitHub). 

Genetic algorithms - commonly used to generate high-quality solutions to optimization 
and search problems by relying on bio-inspired operators such as mutation, crossover and 
selection. — Wikipedia 
 
At its core, a genetic algorithm (Carr, 2014): 
 

1. Creates a population of (randomly generated) members 

2. Scores each member of the population based on some goal. This score is called   

    a fitness function. 

3. Selects and breeds the best members of the population to produce more like them 

4. Mutates some members randomly to attempt to find even better candidates 

5. Kills off the rest - Survival of the Fittest - and 

6. Repeats from step 2. Each iteration through these steps is called a generation. 
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3.5 Backtesting the model: a bespoke Kupiec-based loss 
function 

 

A key point that was stressed in the previous sections, was that ML models can take 

any kind of loss function as long as it is differentiable. This is extremely useful in risk 

measurement, where we cannot simply compare a ‘real’ risk measure with a predicted 

risk measure and e.g. take the squared deviation. For instance, the closest thing to a 

real VaR at some point in time is the empirical distribution of the PnL in the future and 

can therefore only be assessed afterwards. It is not like one tries to predict house prices 

based on location and living space, where at any point in time one has both data on 

the features X and the label Y (= sample house prices). Due to its different nature, the 

integrity of risk models is tested differently than common regression frameworks (= 

variance). The most well-known framework for backtesting is the Kupiec-Christoffersen 

framework (Christoffersen, 2008; Kupiec, 1995).  

 

The framework is mathematically very similar to binomial backtesting of exceptions. 

With a cl% confidence level, the probability of an exception is 1-cl%. Therefore, the 

occurrence of x exceptions on N observations can be tested binomially: 

 

𝑃(𝑋 = 𝑥) = �𝑁𝑥� (1 − 𝑐𝑙)
å𝑐𝑙�Då            (3.5) 

 

The ratio 𝑥/𝑁 is also referred to as the violation ratio. The binomial distribution, 

however, is discrete. This means that we need shortcuts for the calculation of a p-value 

to test the hypothesis whether x is significant. One such a shortcut is the normal 

approximation of the binomial distribution. Luckily, the Kupiec test provides us with 

an alternative. 

 

The Kupiec test (Kupiec, 1995), also called the points-of-failure test, uses a log-likelihood 

ratio (LR) based on the percentage of exceptions or violation ratio (x/N) and the cl (p 

= 1-cl), which is 𝜒² distributed with 1 degree of freedom. Therefore, we can now 
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calculate a p-score to assess whether the number of exceptions is statistically 

significant, i.e. the model likely to be incorrect: 

 

        (3.6) 

 

The loglikelihood ratio under the points-of-failure test (𝐿𝑅çèé) is also referred to as the 

unconditional loglikelihood ratio (𝐿𝑅V:). This test forms the theoretical background 

behind the Basel traffic-light assessment of internal models. Taken a 99% cl and 255 

trading days, we expect 2,55 exceptions a year. The traffic-light refers to three zones a 

model can end up after the backtest: a green zone with up to 4 exceptions, an orange 

zone with 5-9 exceptions and a red zone with 10 exceptions or more. In the first case, 

the model is assumed to have no integrity problems. In the second case, the multiplier 

(that was shortly mentioned in 1.2) is increased as a penalty. Thus, the risk that was 

measured is increased before it is translated into RWA. In the red zone, intervention is 

needed. It indicates that there are certain quality and accuracy problems in the model. 

 

The framework was extended by Christoffersen in 1998 with the concept of conditional 

coverage. For an overview, see Christoffersen, 2008. Conditional coverage44, in contrast 

to the unconditional ratio, boils down to including the autocorrelation of exceptions in 

the framework. Like any accident, an exception does not come alone. Christoffersen 

therefore calculates an independent LR (𝐿𝑅ê��) which measures the serial 

independence of the data. Then he sums up the 𝐿𝑅çèé with the 𝐿𝑅ê��  and gets the 

conditional LR (𝐿𝑅::). 

											𝐿𝑅:: = 𝐿𝑅ê�� + 	𝐿𝑅V:                            (3.7) 

 

Since these expressions are commonly used to assess the model after construction, it 

makes sense to include these expressions in the loss function so that the machine learns 

                                                
44 In the words of Christoffersen: “An accurate VaR measure should satisfy both the unconditional 
coverage property and the independent property. The unconditional coverage property means that 
the probability of realizations of losses in excess of the estimated VaR must be exactly (1-cl)%. The 
independent property means that previous VaR violations do not presage future VaR violations.” 
(Christoffersen, 2008) 

𝐿𝑅çèé = −2 logë
(1 − 𝑝)�Då𝑝å
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to build a model that is optimal from this exception point of view instead of e.g. only 

looking at L2 loss  (Liu, 2005). To achieve this end, a custom loss function was 

developed that compares the tensor of predicted VaRs with the actual returns. 

Exceptions in our loss function are thus defined as the number of times that the actual 

losses exceed the predicted VaR. Based on the violation ratio, the LR is calculated from 

the conditional and unconditional perspective. Since these ratios should ideally be 

insignificant, these ratios cannot be too high and they would thus qualify as a 

measurable quantity of loss. If we use this as loss45, however, we find that this definition 

is not differentiable and leads to NaN loss. Therefore, we start from classical L2 loss 

where the predicted VaR is compared with the ‘real’ lookback empirical VaR and then 

add a penalty for an excessive violation ratio46. The latter approach is always 

differentiable and does not lead to NaN loss. 

In summary, the concepts of this section are at the core of how our machine learns, i.e. 

the feedback it gets from giving our combination model weights depends on its current 

backtest results. The model is therefore expected to generate superior results – at least 

from a backtest perspective - if it is properly trained in-sample47. Whether this can be 

generalized out-of-sample, will be the main focus of the next chapter.   

 

3.5 Conclusion 
 
In this chapter we looked under the bonnet of machine learning models, focusing on 

the main design parameters we have in building neural network algorithms. We 

elaborated on the modelling opportunities ML models give to solve our combination 

problem. We particularly emphasized that the solution of our combination does not lie 

in the set of linear combinations of the input risk models. Building on the critique in 

chapter 1 and the insights of chapter 2, we provided the rationale behind a DNN VaR 

combination model with roughness as ‘contextual’ variable. The set-up and model 

implementation, as well as the results, will be explained in the next chapter.  

                                                
45 Or we could take the corresponding p-value by using a 𝜒²-distribution. 
46 Note that the relative weight of the L2 loss compared to the Kupiec-based penalty for   
    excessive violation can be tuned in the form (again, see emiellemahieu/AOR on GitHub. 
47 Unfortunately, this is not a trivial assumption, as the next chapter will soon illustrate. 
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Chapter 4  

The model & results 
 
 
3.1 Data & model set-up 
 

“There are no facts, only interpretations.” 
Friedrich Nietzsche 

 
The main design ideas behind the model have been discussed in chapter 2 and 3, 

culminating in the figures on page 81. This chapter describes the actual set-up and 

implementation of the model, as to ensure maximal reproducibility for further research. 

Again, note that the code is made available through GitHub [emiellemahieu/AOR]48. 

After going through the model for one ticker, we will discuss the model for all 780 

tickers and elaborate on the implications for the efficiency of risk and reward of the 

assets in our horizon. Essentially, the code follows the next steps: 

                                                
48 The python script was developed on Google Colaboratory, a platform that was initially 
developed for internal use by Google’s ML researchers but is now available for students and 
developers. The code is presented in the form of an IPython Jupyter notebook and the platform 
gives the possibility to run the code local or on the cloud (GCP) leveraging Google’s GPUs 
(Graphics Processing Units) and TPUs (TensorFlow Processing Units). 

Figure 25: Model workflow 
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(1) It takes a cross-section of 11 country codes (Belgium, Canada, France, Germany, 

Italy, Japan, Netherlands, Sweden, Switzerland, United Kingdom and the United 

States) and 10 sector codes (Finance, Technology, Utilities, Telecommunications, 

Consumer Services, Health Care, Consumer Goods, Industrials, Basic Materials and 

Oil & Gas) and fetches the constituents of these performance indices, i.e. the 10 

biggest tickers according to market cap. However, not all countries have 10 large-

cap stocks in all industries. E.g. Belgium only has 2 relevant stocks in the Oil & Gas 

industry. Therefore, we eventually end up with only 780 stocks. The code 

downloads OHLCV (Open-High-Low-Close-Volume) using the Refinitiv Eikon API 

for 15 years of data (1/3/2004 – 1/3/2019) on a daily basis. Below, an example is 

given for the YCD quote: 

 

 

 

(2) It then determines the daily geometric returns, log(Pt/Pt-1), and estimates different 

GARCH processes for its vol. Below the returns are shown in Fig. 27, as well as the 

in-sample forecasts of a GARCH(1,1) process (cf. Equation 1.8). 

Figure 26: YCD (Refinitiv mnemonic for CDI or Christian Dior 
Industries) stock quote 
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Since we have a large time window of 15 years, the obvious feature of the time 

series of volatility is the financial crisis of 2007-2009. In the volatility cluster 

between observations 1000 and 1500, we notice the biggest daily returns, ranging 

from 15% gains to 12% losses. During all volatility spikes, we see that returns are 

more scattered and typically correspond with a downturn in the market. Indeed, 

when the persistence of volatility goes up, i.e. periods of continued higher sigma, 

we notice that the roughness of the price chart increases. These periods will be of 

particular interest for our machine learning model, since including this return, 

volatility and roughness data will enable the network to learn patterns that occur 

during financially distressed periods. Please find Table 7 below for the main price, 

return and volatility data and quantiles of the CDI stock. 

 

Figure 27: The corresponding return series (geometric returns) and 
estimated GARCH(1,1) process  
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Table 7: CDI price, return and volatility information 

 Close High Low Open Volume Daily 
return 

Daily 
volatility 
(GARCH) 

Count 3915 3915 3915 3915 3915 3915 3915 
Mean 123.14 124.14 121.80 122.98 149.23 0.00053 0.0156 
Min 28.44 29.00 26.89 28.31 1.90 -0.12330 0.0098 
25% 65.93 66.95 65.39 66.25 71.85 -0.00073 0.0127 
50% 93.59 95.82 93.54 94.79 119.00 0.00081 0.0144 
75% 154.40 153.90 150.95 152.22 186.00 0.00879 0.0168 
Max 384.70 398.00 390.90 393.50 3283.00 0.1546 0.0475 

        
 

 

(3) The code uses these return and volatility estimates - and, if required, other 

distributional parameters - to calculate the standard VaRs discussed in chapter 1 on 

a daily horizon with a 99% confidence level. Time-varying mean returns, kurtosis, 

skew etc. are calibrated over a lookback window of the past n observations49. 

 

(4) Next, the code estimates three measures of roughness for the past n daily prices. 

The Hurst exponent (H) of the daily price process, Higuchi and Katz’ fractional 

dimensions (D) of the price charts are calculated based on the past n observations, 

where n corresponds to the lookback window defined for the recalibration of the 

standard VaRs. Therefore, we obtain time series of ‘rolling’ measures of roughness 

which are shown in Table 8. 

 

Table 8: CDI rolling roughness exponents and standard risk measures 

 Hurst 
Exp 

Higuchi 
D 

NVaR TVaR logVaR HS FHS FVaR GVaR 

Count 3915 3915 3915 3915 3915 3915 3915 3915 3915 
Mean 0.3678 1.5061 0.0360 0.0404 0.0352 0.0433 0.0404 0.1187 0.0726 
Min 0.3156 1.3836 0.0214 0.0249 0.0212 0 0 0.0751 0.0461 
25% 0.3274 1.4844 0.0287 0.0331 0.0284 0.0335 0.0327 0.0972 0.0597 
50% 0.4108 1.5024 0.0328 0.0377 0.0322 0.0396 0.0394 0.1100 0.0674 
75% 0.4737 1.5325 0.0391 0.0447 0.0383 0.0456 0.0423 0.1272 0.0777 
Max 0.5888 1.6125 0.1145 0.1307 0.1083 0.0806 0.1222 0.3544 0.2145 
          

 
                                                
49 This can be modified in the form fields the code starts from. For these results, it was set at 
500 days. 
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(5)  As was seen in the previous chapters, some of these VaR estimates are critically 

understating risk, while very conservative models drastically overstate projected 

losses. Looking at the estimates in Table 8, for instance, we see huge differences 

between the light- and fat-tailed approaches. This is because we work with a 99% 

VaR and the quantile we look for lies deep in the tail.   

Therefore, the code combines the results of (3) and (4) in a neural network 

regression model that supports on elements from the TensorFlow and Keras 

frameworks50. The sample is split up, since cross-validation will be done for our 

model assessment. Hence, we split the data into a training set (in-sample or IS, 

which we will use to train our weights), a validation set (which we will use to tune 

our hyperparameters) and a testing or forecasting set (out-of-sample or OOS, for 

comparing the adequacy of our different models on unseen data). Given that we 

have almost 4000 observations (15 years with approximately 255 days a year), we 

train our model on approximately 2600 observations, which leaves us 700 

observations for validation and testing each. The hyperparameters are determined 

by genetic algorithms (see 3.4) and the loss function is a custom loss function that 

combines the standard L2 loss with a penalizing factor for an excessive violation 

ratio (see 3.4). The result is a combined VaR model based on roughness, or a ‘rough 

VaR model’. 

 

(6)  Next, it backtests the trained rough VaR model and compares the results with the 

standalone models in terms of violation ratio, unconditional and conditional p-value 

(also see 3.4). In Table 9, we clearly see that in-sample (IS) our model uses the 

2631 training features of VaRs and roughness to fit the 1% significance level nicely 

(31 exceptions compared to a theoretical 27). This is because the loss function 

penalizes any exception over the 27 threshold severely. However, in-sample this 

could be due to overfitting, a typical issue in machine learning, so we focus on out-

of-sample (OOS) results. This is what risk management essentially is about - 

controlling future losses based on historical data - so we should not be too confident 

                                                
50 Again, for details, I warmly invite you to take a look at emiellemahieu/AOR  on GitHub. 
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about in-sample results and be wary about overfitting. That is why we focus on 

forecasting power (OOS results) here and in the next section to compare models. 

 

 

In Table 9, we compare our rough model with a more aggressive (Gaussian) model 

and a more conservative (Gumbel) model. We find that our rough model yields 9 

exceptions over 782 OOS returns, which corresponds to a violation ratio of 1,15% 

which is in line with the in-sample results. When we look at the unconditional 

loglikelihood ratio, we find that this number of exceptions is not significantly 

different from 8 (p-value = 0.6787).  

 

Table 9: Backtesting the results using the Kupiec-Christoffersen loglikelihood framework 

 Rough model (IS) Rough model (OOS) Gaussian (OOS) Gumbel (OOS) 
Controlled 2600  773  770  781  
Exception 31  9  12  1  

total 2631  782  782  782  
Violation 

Ratio 
0.0117  0.0115  0.0153  0.0012  

 Statistic p-value Statistic p-value Statistic p-value Statistic p-value 
Unconditional 0.7988 0.3714 0.1715 0.6787 1.9399 0.1637 9.5865 0.0019 
Independence 0.7714 0.3797 0.2096 0.6471 1.8686 0.1716 0.0026 0.9596 
Conditional 1.5703 0.4561 0.3811 0.8265 3.8085 0.1489 9.5891 0.0082 

 

Figure 28: Backtesting of in-sample (IS) predicted 99% cl returns with 
indicated exceptions 
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The autocorrelation of these 9 exceptions is not significant, so that we do not need 

to look at the conditional ratio. This implies that the 9 occurred exceptions were 

not consecutive losses in the same period of distress, which suggests that our 

algorithm is adaptive enough to recognize these types of patterns. When we 

compare with a Gaussian model, we find 12 exceptions, which is more but not 

problematic from the Kupiec-Christoffersen point of view (p-value = 0.1637). 

Gumbel, on the other hand, only yields one exception (p-value = 0.0019) and is 

therefore way to conservative to be a correct model. 

 

Figure 30: For comparison, backtesting results (IS) of another more aggressive model (logVaR) 

Figure 29: For comparison, backtesting results (IS) of another more conservative model 
(TVaR with varying kurtosis) 
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(7) The final and seventh implemented step consists of the analysis of the risk-return 

trade-off implied by the model. Given the different nature of our model compared 

to standard portfolio theory, it is worthwhile to take a look at the implications of 

the model in terms of the efficiency of the assets in our horizon. These steps thus 

make the link with our model and section 1.11. Consequently, the code reports the 

VaRs and the expected returns on the stocks. The performance ratio compares the 

return with the risk measure to describe the stock’s efficiency, i.e. what percentage 

return do we expect compared to the percentage loss we risk on the same horizon 

according to the model? The next section will delve into the meaning of these ratios, 

since the individual estimates do not say much compared to the aggregate results. 

 

According to these performance ratios, stocks in a hypothetical portfolio could get 

a buy, hold or sell signal based on the quantile of their efficiency score. This 

essentially means that the return of the portfolio would relatively increase more 

than the portfolio VaR when buying, or the portfolio VaR relatively decreases more 

than the return when selling, thus increasing its efficiency (cf. 1.11). However, 

these signals are crude and therefore need to be more refined51. 

 

3.2 The link with ES and SRM 
 
A short but crucial remark needs to be made on the link between our VaR prediction 

model and the coherent models discussed in chapter 1, i.e. Expected Shortfall (ES) and 

Spectral Risk Measures (SRM). Figure 31 illustrates that we can augment our rough 

VaR combination model by simply introducing a for-loop in the code that iterates the 

model over all the needed (tail) probabilities. As such, by adding an additional step 7 

(a and b)52, we see that the calculation of ES and/or SRM becomes possible. For ES, 

we will iterate the model over all tail confidence levels. The results are scenarios (7a), 

where we have projected losses with their probability (1-cl). Then we take a simple 

                                                
51 To question the practical relevance of these efficiency ratios, the only option is to test the profitability 
of cross-sectional long-short strategies based on these quantities. This will be briefly discussed in section 
5.3. 
52 Note that ‘Analysis’ now becomes step 8. 
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average to know the average tail VaR or ES. For SRM, we do the same thing but 

typically over all (or at least more) probabilities. The weighting function then has to be 

defined based on the level of risk aversion by the user, but this will mostly depend on 

the application’s purpose. 

 

 

 

4.3 Results and discussion 
 
4.3.1 Model performance  

 

The first section of this chapter discussed only one example (CDI) of how the code 

combines different models into one combined measure using roughness. In order to be 

able to provide an answer to the research question, we need to reflect on the model’s 

generalization and therefore need to look at the results for more than one ticker. In 

this section, we will compare the results of our model (referred to as rough model) to a 

model without roughness (referred to as combination model) to see whether roughness 

is a significant feature. We could also critically investigate the weights of our model 

directly but, given the complexity of the multiple layers, it is very hard, if not 

impossible, to draw any conclusions from these arrays. The motivations for opting for 

a black-box model were discussed in the previous chapter, but it is clear that the best 

counterargument against our approach is that there is opaqueness around how our 

Figure 31: From VaR to ES and SRM 
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model learns as weights cannot be assessed straightforwardly. That is why, instead of 

focusing on these weights, we will be focusing on comparing backtesting results to see 

what our model has learned. 

 

Table 10: Out-of-sample performance (1) 

Total number of assets       780 
Proper training possible*     49% 381 
Proportion of significant models**     UR CR 
Rough model 
Combination model 
Normal model 

    8% 8% 
    10% 

20% 
12% 
25% 

Gumbel model      67% 67% 
          
*   Models are properly trainable if in-sample loss is not excessive (UR/CR not significant in-sample).    
 
** Significant percentage of models of the ‘properly trained models’, from the unconditional   
     (UR) and conditional (CR) perspective respectively. 
 

 

Similar to Table 9, Table 10 summarizes the out-of-sample performances of our model 

compared to a more conservative (Gumbel) model and a more aggressive (normal) 

model. Moreover, a simple combination model without roughness is added to 

investigate the importance of roughness in our model. At first glance, the most 

remarkable feature of this table is that not all models were considered well-trained. 

From the 780 assets in our horizon, a meager 381 models were considered properly 

trained (49%). The other 51% had a significant in-sample loss, i.e. UR or CR is 

significant on the fitted training sample. We observed that when a network does not 

even manage to fit the training set properly, this is most likely due to a set of recurring 

data issues. As our model combines different individual models, it should always be at 

least as performant as the strongest model in the input features. In other words, even 

if our model would not be of any added value, it should then give 100% weight to the 

best individual model. However, in roughly half of the cases the model gave nonsense 

results in-sample while in the other half, where in-sample loss was not significant, the 

model outperformed the other models out-of-sample. Moreover, most of these issues 

occurred when there was no 15 years of data available. When a sample includes 

substantially less then 4000 observations, the number of available training days quickly 

erodes to impractical levels, as we also need a validation and testing sample. If you 
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only investigate a very limited set of tickers or indices, it is easy to guarantee that there 

is enough data available and that there are no severe data issues. This is what all ML 

papers with a similar set-up (i.e. financial time series) did. Given that roughness is both 

country, industry and asset specific (cf. 2.5), it would make no sense to make inferences 

after having trained the model on only a handful of indices. We need a broad universe 

of assets from different markets to question the model’s generalization, but that 

inevitably leads to data being streamed in a more mechanical fashion and more data 

anomalies53 occur. These data anomalies can lead to butterfly effects (cf. 5.5), such that 

our model does not converge to desirable results. 

 

From the tickers that were properly trained, we find that only 8% still had a significant 

amount of exceptions according to both the conditional and unconditional 

loglikelihood ratio. This is a substantial improvement compared to the more aggressive 

normal method (which yields 20% and 25% erroneous models respectively) and the 

more conservative Gumbel method (which yields 67% for both UR and CR). The higher 

percentage of erroneous models is (1) due to too many exceptions in the normal case 

and (2) due to too few exceptions in the Gumbel case. This is shown in Table 11 where 

the average violation ratio of our model is compared with the simple combination 

                                                
53 These typically include (1) NaN traps, (2) (reverse) stock splits and/or (3) improper scaling. 
  
(1) A NaN trap means that if some observations are unavailable and replaced by a NaN (Not 
a Number) value, a machine learning model can show anomalous results. Even if these NaN 
values are rare, the loss function can diverge away from an optimum or can result in so-called 
NaN loss.  
 
(2) (Reverse) stock splits lead to (+)-100% returns, which will confuse the model severely 
because there is no pattern behind this sudden excess volatility. These are accounted for by 
replacing the closing prices in the model by a performance index (PI) that takes into account 
dividends and stock splits. However, most of the tickers that did not converge using closing 
prices also do not converge using performance indices. This brings us to the conclusion that 
these stocks splits are not that important.  
 
(3) Improper scaling means that if the features are not correctly preprocessed, different scales 
for our input variables may lead to spurious variation. E.g. if daily returns vary with ±0.02, but 
Higuchi D varies with ±0.20 this leads the model to believe that there is ten times more 
variability in the latter variable. Spuriously, the model will attach more importance to Higuchi. 
That is why we first standardize the data in the preprocessing phase. However, some erroneous 
values seem to slip through the cracks and disturb the model severely.  
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model and the individual standard methods. We should not attach too much 

importance to an average and more to the likelihood ratios, but they give an indication 

of the models’ overall biases. 

 

Table 11: Out-of-sample performance (2) 

  Significant  
UR* 

Significant  
CR* 

Average 
Violation ratio  

Rough  
Combination  
 
Normal  
Lognormal 
Gumbel 
Fréchet 

8% 8% 0.7757% 
10% 12% 1.4728% 
   
20% 25% 1.2956% 
22% 29% 1.3741% 
67% 67% 0.1114% 
96% 96% 0.0154% 

Historical simulation 17% 19% 0.9475% 
Filtered historical simulation 17% 19% 1.0398% 

*  Of the 381 models that were properly trainable (in-sample loss is not excessive, UR/CR not  
     significant in-sample).  
 

 
 

From these numbers, we are inclined to believe that an ML model nicely outperforms 

the individual models. Moreover, the difference between the rough model and the 

simple combination model is quite significant (8% compared to 10/12%). Averages 

might not be the best way to summarize the violation ratios of all models, but it is clear 

that our model fits the 1% violation ratio rather nicely.  

A simple combination model clearly outperforms individual methods in terms of the 

significance of its violation ratios, but given the average ratio it tends to underestimate 

the risk slightly. We further see that normal and lognormal methods are quite similar 

in terms of performance. Gumbel and Fréchet methods yield dramatic results. Although 

they are based on the theoretically correct answer to our VaR problem (cf. 1.4.2), they 

more often than not generate quantiles that are never exceeded by the real losses. A 

case of no exceptions inevitably leads to a significant loglikelihood ratio, such that most 

of these models are useless. The simple historical simulation performs remarkably well. 

More sophistication clearly does not always imply superior performance. HS is both 

very easy to understand, implement and apparently works quite nicely too. There is, 
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however, no significant difference with the results of a filtered historical simulation. 

This leads us to suspect that volatility-weighting returns is not as useful out-of-sample 

as we would think beforehand.  

 

All in all, these numbers illustrate that roughness appears to be an informative feature 

for combining different risk measures, as our rough model consistently outperforms the 

simple combination model. Table 11 sums up what we need to know to answer the 

research question, as it shows that over 381 models our model was consistently better 

at controlling the projected losses. However, one blatant limitation of our model 

quickly became apparent and ruined the party: machine learning models only 

outperform traditional models if they are properly trained, and that percentage was 

surprisingly low. We could argue that if the model is well-trained, then our ML model 

will outperform standard models. If we take a random stock, we might as well throw a 

coin and if it is head the ML model would train properly and outperform all other 

models. If it is tail, it would give nonsense results and be completely unreliable. This is 

not a very comforting conclusion for people that would mechanically use black-box 

models for certain applications. A point that will be emphasized in the next chapter, is 

that we should therefore be more interested in why our model converges in some cases 

and not in other cases, instead of being interested in mere backtesting results.  

 

We should not be overly critical neither. The model clearly has its usefulness since we 

know that at any time, if the model is able to train properly on the available data up to 

that point, it is likely to be better at predicting future losses than other methods. 

Another insight is that, because of this issue of convergence, we could move away from 

training a model per ticker. We could train a model on a very long, hypothetical time 

series that is simply a concatenation of time series of many different stocks, collected 

from a pool of similar stocks according to some features. Then, we could use one 

trained ‘supermodel’ to make predictions for many other stocks. However, this was not 

the approach of this set-up and also poses new questions54. 

                                                
54 Such as ‘What stocks are similar?’, ‘What data can be concatenated without introducing new 
inconsistencies or data anomalies?’, et cetera. 
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Whether the claimed contribution is substantial compared to a simple combination is 

up to debate, since there is no formal test to compare the percentages of Table 11 with 

each other. One way to look at these figures is to break down the percentage of 

significant rough models in the ones that were also significant for a simple combination 

model and the ones that were not, and vice versa. 

 

Table 12: Breaking down the % of significant models 

Model UR % CR % 
Rough model 8%  8%  
Combination model  38%  35% 
Normal model  26%  20% 
Gumbel model  32%  34% 
Combination model 10%  12%  
Rough model  26%  27% 
Normal model  30%  20% 
Gumbel model  32%  32% 
     

 

Table 12 breaks down the 8% significant rough models in what percentage of these 

tickers were also problematic for the other models. These percentages are clearly quite 

low. Of the significant models in our model, only 38% (UR) was also significant in the 

simple combination model and 26 and 32 percent in the normal and Gumbel models 

respectively. This leads us to believe that the errors in the models are not perfectly 

correlated, and the improvements by our model will lead to different conclusions. We 

therefore argue that the additional precision is not merely spurious precision55.  

Finally, no clear-cut patterns were found between significant models and countries or 

industries. 

  

                                                
55 As we define spurious precision as a lack of making different decisions after the improvement of 
the model. For instance, a VaR of 12.3456% will not make any difference compared to a VaR of 
12.3% for e.g. the decisions in section 4.3.2 and 5.3. Given that we find low correlations in errors 
and completely different numbers of exceptions (which reflects the overall level of VaR), we assume 
decisions would be different (e.g. allocation decisions, capital requirement, etc.). 
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4.3.2 Implications for risk and return 

 

Let us now see what the model implies about risk-return trade-offs. Figure 32 plots the 

risk as measured by the daily VaR delivered by our rough model, compared to the 

average daily return over the same period. Alternatively: ‘how much money do we get 

on average over a one-day period, and how much money can we expect to maximally lose 

over the same period in 99% of the cases?’  

 

 

With a bit of imagination, one can see the ‘banana’ shape we expect from an efficient 

frontier. More risky stocks deliver more extreme high or low returns, but the vast 

majority of returns is found in the region with close-to-zero returns and average 

riskiness. The color is derived from the performance ratio. The least efficient tickers are 

the purple ones, having moderate returns with high risk or outright abysmal returns. 

The blue cluster are stocks that have moderate returns but very low risk. Given the 

short time horizon, even low returns can compound to nice returns if the anticipated 

losses on that asset are very low. The most efficient region is the green region, there 

Figure 32: Risk (MVaR) and reward according to the model 
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Figure 33: ER/MVaR efficiency, an example (France) 

our model predicts either nice returns with low risk or very nice returns with moderate 

risk.  

In the panel on the right-hand-side, Figure 32 shows an alternative efficient frontier. 

The mean-variance trade-off as suggested by Modern Portfolio Theory is replaced by 

an expected return versus (marginal) VaR trade-off. Recall our discussion in 1.11, the 

Sharpe ratio of efficient portfolios in MPT is now replaced by ER/MVaR ratios.  

The Sharpe ratio is often used as an ex post performance measure. However, the Sharpe 

ratio can also be seen as an a priori expected measure of performance, if we assume 

past return efficiency is indicative of its future efficiency. From the latter perspective, 

we can assess the future expected return efficiency of stocks from the perspective of 

our model using the ER/MVaR estimates delivered by the model.  

 
 
 
 

How can we increase the efficiency of a portfolio using the concepts in 1.11 and our 

model? This corresponds to migrating from the purple-circled region in Figure 32, i.e. 

the region where we most likely end up if we pick stocks at random or with gut feeling, 

to the green region. Since it is hard to visualize all assets of our universe at once, let us 

consider the efficiency of the French stocks in the sample. Figure 33 shows the average 

returns, MVaR and performance ratio characteristics of French stocks. On the right-
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hand-side, we find a performance map that compares the French stocks. For illustration 

purposes, an additional dimension is added to the plot, namely a buy, sell and hold 

color. This is based upon three buckets56 of performance: the top decile of performance 

ratios, the bottom decile and the middle majority of stocks respectively. On the left-

hand-side, we plotted the risk-return characteristics where French stocks are indicated 

by their ticker. Our CDI stock from 4.1, for instance, performs quite nicely. On the left 

panel of Figure 33, we see that YCD offers low returns, but with a very low risk. Given 

the short time horizon (daily), even small returns can compound to substantial returns 

when the underlying risk is very low. This sort of efficiency clearly is the case for CDI, 

as can be seen from the right panel: it has lower than average returns with a measured 

risk way below average. That is why the performance ratio is one of the highest, as it 

crosses the first concentric circle.  

The migration strategy proposed in the previous paragraph can be achieved by a cross-

sectional long-short strategy, as we will discuss in 5.3. Given the completely different 

nature of this strategy compared to mean-variance optimization, it is expected to 

generate different Sharpe ratios and/or alpha than traditional mean-variance 

optimization. Whether this is a fruitful approach is still to be tested, as we will discuss 

in the next chapter.  

 

4.4 Conclusion 
 
In this penultimate chapter, we described the workflow behind the code of our 

roughness-based combination model. We first discussed the data set and the collection 

of methods and algorithms that were implemented in the code. Next, we elaborated on 

the link between our VaR model and the coherent risk models from chapter 1. We then 

delved into the results of all the 780 trained models. We compared the percentages of 

significant models of our rough model to a simple combination model and the other 

individual models. We concluded that our model works well, given that it is trained 

properly in-sample. We therefore expanded on some recurrent data issues behind this 

                                                
56 Of course, this division into buckets is crude and needs to be more refined in order for the 
cross-sectional long-short strategy to make sense (cf. 5.3), but it illustrates the idea. 
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observation. Moreover, we were realistic enough to acknowledge that the main reason 

behind this issue is the black-box principle underlying  our model. We therefore have 

to conclude that the added value of this analysis is not only in the model but - maybe 

to a larger extent - in the critical appraisal of machine learning models and their limited 

convergence to desirable results. This thesis was therefore not only an exercise in 

modeling and programming, but even more an exercise in model mindfulness and 

relativism. 

 

Apart from this skepticism, we can say that if we look at models that have learned 

something in-sample, our model almost guarantees outperformance. Our model’s 

usefulness thus stems from the fact that, if at any given time our model converges based 

on past information, it is likely to be better at controlling the PnL in the future than any 

other method. We therefore came to the conclusion that roughness is a significant 

feature, which was the core aspect of our research question. Moreover, we find that 

erroneous ML models are not perfectly correlated with the other methodologies. This 

leads us to believe that the improvements that we found for half of the tickers are not 

spurious, since they imply that we would make different decisions. In addition, given 

the convergence of results when we have sufficient information, it would make sense 

to construct one single model that is trained on a concatenation of many time series. 

This introduces extra challenges, however, and is therefore subject to further research.   

 

All things considered, it cannot be overemphasized that there is still a lot of ambiguity 

in the model. This is not surprising from a black box, but it has clear implications for 

model mindfulness. This point will be stressed again in the next chapter. 
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Chapter 5 

Conclusions and recommended further research 
 
 
 
5.1 Implications for risk managers 
 
 

 
“There is enough math in finance already. What is missing is imagination.” 

 
Emanuel Derman 

 

The implications for risk managers who model market risk and translate these measures 

in capital requirements (cf. 1.2) is epitomized by the following caveat: “Markets are 

rougher than most people think.” 

 

A first obvious implication of the empirical work that was done in this thesis, is that the 

roughness implied by standard risk models is not consistent with real-life markets. 

Whether this means that risk managers should include Hurst exponents and fractional 

dimensions in their equations is another debate. The essential take-away is that this 

observation forces the risk modeler to be mindful about his models and their 

assumptions.  

Secondly, a dynamic combination of models with varying degrees of aggressiveness 

into a combined measure is a useful approach, whether we include roughness or not. 

This quickly became apparent when we compared a simple combination model with 

individual standard methods.  

Thirdly, this dissertation suggests that increasing roughness of the underlying stock 

process, or increasing persistence in the volatility process, is indeed highly correlated 

with market turbulence when more conservative models should get higher weights. 

That working hypothesis was confirmed by our backtesting results. This dissertation 

thus argues that roughness contributes to a more effective combination. Whether 
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roughness is superior to other ‘contextual variables’, however, is a conclusion that 

cannot be drawn from this work and calls for further research. There is a plethora of 

other modeling opportunities to determine those weights (e.g. including fundamentals 

of the underlying in question, including order flow data in high-frequency contexts, 

etc.). In summary, we are both optimistic and skeptical about the obtained results and 

their implications for practical risk management.  

Fourthly, whether machine learning is the best way to combine those measures is also 

an interesting debate to which this dissertation contributed. We would be inclined to 

favor ML, because of (1) its adaptive nature, (2) the way it learns compared to standard 

statistical techniques (backpropagation versus least-squares or maximum likelihood), 

(3) the bespoke loss function which penalizes exceptions and therefore forces the 

model to be consistent with the confidence level and (4) simply because of its superior 

backtesting results. However, we are well-aware of its disadvantages (cf. 4.4) such that 

it is wishful thinking that a regulator would accept internal models that are based on 

black boxes (cf. 5.4). Black box risk measurement is therefore something that only 

financial institutions that are not bound by stringent capital requirement models are 

able to use in the short run.  

Lastly, a rule of thumb that could be useful for risk managers, which was briefly 

discussed in the section on the link between roughness and finance (2.6), is to dilate 

projected losses by the Hth power57 of time instead of ½. This is a simple rule that 

nevertheless captures the underlying roughness of the process in an elegant way. This 

would mean that the VaR surface (see Dowd, 2007, p. 31, for an example) which shows 

all combinations of VaR, holding period (l-days) and confidence level (cl) would look 

different depending on the underlying roughness of the market.   

Figure 34 illustrates these findings. It shows the normal VaR of a process with 0% 

expected return and 1% volatility on the Z axis, with the holding period (l days) and 

confidence level (cl) on the x- and y-axis respectively. Panel A, B and C show this 

                                                
57 Note that here we mean the H of the predicted VaR numbers and not of the price or volatility 
process. In other words, we apply R/S analysis to the time series of daily VaR to dilate VaR to an l-
day period using l to the power of H. H would then capture the persistence in the series of losses. 
E.g. an accumulation of losses would increase H and the losses dilated by a bigger factor. This 
assumes that the roughness of the market is indirectly measured by the roughness of the risk 
measure. 
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surface for 3 values of H ( ½ , 0.30 and 0.60 respectively) from two angles (cl and l 

change axes for illustration purposes). Looking at the difference in order of magnitude 

of VaR between the different panels, it is obvious why H is important to take into 

account. If the persistence in losses increases, the error one makes in applying the 

Basel-compliant compliant √𝑇-rule becomes really worrisome. This conclusion thus 

suggests that monitoring the roughness of the price process, the volatility process and 

the time series of VaR all have a different but complementary use in risk management 

applications. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(A) 

(B) 

(C) 

Figure 34: VaR surfaces and H 
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5.2 Implications for asset managers 
 
 

 
“Contrary to popular opinion, mathematics is about simplifying life, not complicating it.” 

 
Benoît B. Mandelbrot 

 

“Make things as simple as they are, but not simpler.” is a truism that is commonly 

attributed to Albert Einstein and unfortunately applies here. Asset managers, even 

more than risk managers, are not interested in the statistical implications of research 

but in the practical ones. If a simple model performs well (e.g. HS), the marginal 

improvement of complicated statistical models is not worth the cost of trying to grasp 

that extra complexity. Although I am fully aware of this, there is a reason for risk 

managers to listen. 

 

First and foremost, in line with the conclusion for risk managers, the empirical work 

done in this dissertation urges asset managers to be aware that markets are rough and 

that the uncontrollable element in risk models is typically understating or overstating 

the real risk. This should incentivize asset managers to (1) always be mindful about 

the models they use and (2) grasp the usefulness of combining different methods. 

Whether this leads them to use machine learning for this combination problem or 

simple rules of thumb, is fully up to them. The most important conclusion they should 

draw is to combine methods sensibly in the first place.  

Secondly, the rule of thumb that was proposed in the previous section can be useful for 

asset managers too. For instance, it can give them insight in how big a loss can get on 

a bad position, given the period needed to get rid of that position, their current daily 

loss on that position and the historical H of the VaR time series of comparable assets in 

crisis periods. It is clear that this is just one example and a similar type of rationale can 

be applied on all kinds of similar estimation problems.  

Thirdly, another more qualitative way to consider roughness and that would appeal to 

asset managers is to look at H and D as measures of market efficiency that can help for 

market and/or security selection. Given that H is directly linked to stock market 
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predictability, it is linked to weak-form market efficiency. Depending on the strategy 

(value investing, statistical arbitrage, etc.), different markets in terms of efficiency are 

typically sought after by asset managers. For example, more high-frequency 

applications like technical analysis and order flow analysis require less efficient markets 

like crypto markets. The empirical work that was done in this thesis provides a heuristic 

tool to distinguish between different levels of market efficiency across sectors and 

countries. E.g. Canadian Health-Care proved to be an inefficient market with extreme 

levels of persistence. There are already multiple studies that start from this perspective 

(Alvarez-Ramirez et al., 2008; Cajueiro and Tabak, 2004), but this dissertation clearly 

contributed to this perspective given our really broad scope of assets. 

Fourthly, in line with the previous point, as roughness does not only differs across 

markets and assets but also in the time dimension, this has major consequences for the 

discussion on market efficiency. It is clear that markets are, on average, not efficient. 

However, market efficiency varies considerably over time, given that the dispersion in 

H and D for individual tickers is huge, and thus not due to noise in the estimators. This 

would provide evidence for an adaptive view on markets like the Adaptive Market 

Hypothesis (Lo, 2004). This is nothing new under the sun, as this link was already 

stressed by other authors. However, this dissertation provided more empirical evidence 

for time-varying roughness for a broad cross-section of stocks. The practical relevance 

for asset managers is therefore not only market/security selection based on the link 

between their strategy and market efficiency, but also for market timing58.  

Finally, we provided a rationale for assessing stock return efficiency that goes beyond 

mean-variance analysis and classical Sharpe ratios. This should trigger asset managers 

to reflect on how much they still rely on classical portfolio models and to what extent 

the vulnerabilities that were emphasized in this thesis apply to them. Although further 

research is required to make statements on the usefulness of the new frontier 

introduced in this dissertation, the different angle introduced in this thesis could 

instigate this thinking exercise.   

                                                
58 For instance, we will look for inefficient markets when we implement a simple moving 
average strategy. There the trick is to get in the market when inefficiency increases (large 
deviations for H/D).  E.g. when central banks intervene and cause momentum, persistence will 
go up (H>0.5/D<1.5). 
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5.3 Implications for trading: using efficiency as alpha factors 
 
 

 
“All of us are drawn, like a moth to a flame, to high returns with low risk:  

a high Sharpe ratio.” 
 
Andrew L. Lo 

 
 

Systematic or algorithmic trading, also called robo-trading, regained a lot of attention 

in the ML era. In its early days, systematic trading focused on trade execution, i.e. 

machines optimizing execution in limit order markets from order data. Only later, 

machines became independent agents that trade autonomously using hard-coded 

technical analysis rules, typically in a high-frequency context. In this new era of 

artificial intelligence, these independent agents trade using reinforcement learning or 

adaptive algorithms instead of hard-coded rules. In this section, we will discuss a typical 

‘quant workflow’ for constructing these algorithms based on the shared experience of 

the former CIO of the crowd-sourced hedge fund Quantopian. This platform provides 

an interactive development environment (IDE) for quants that develop trading 

algorithms using predefined APIs for constructing data pipelines, trade execution, 

Figure 35: The Quant Workflow (based on Larkin, 2016) 
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backtesting strategies and so and so forth. While going through these steps, we will 

make the link with the efficiency ratios discussed in the previous chapter and reflect on 

how these can be implemented in an algorithmic trading strategy. Unfortunately, 

implementation and backtesting of such a strategy is beyond the scope of this 

dissertation, but this might be subject to further research.  

 

The development process always starts from a certain Environment. For instance, the 

algorithm will trade under a certain Mandate (e.g. only long-short in equities and fixed 

income, limited to certain geographies, certain constraints on leverage and volatility, 

certain limitations on the concentration of certain buckets of risk and amount allocated 

to individual assets, etc.). Due to the nature of our earlier analysis, a cross-sectional 

long-short strategy makes most sense. Cross-sectional long-short means that we score 

assets according to some factor and go long the ones that perform best, and short the 

ones that score worst, thereby being dollar neutral.  Furthermore, the environment also 

consists of the data sets one starts from. For instance, data can range from the public 

financial markets data used in this dissertation, to proprietary sets on collected Twitter 

and Google Search sentiment data.  

We further distinguish between the Research and Trading environment. In the research 

environment we try to find interesting, novel ideas that translate into statistical 

relationships between stock returns, risk and/or their efficiency. This is therefore much 

like what this thesis implemented. We start by figuring out for what asset universes 

these relationships might apply best. For example, technical analysis strategies like 

moving averages models (the principles we discussed in 2.2), which try to exploit 

momentum, work better in FX markets than equity markets. Therefore, it is key to 

research for which level of market efficiency and at what frequency these strategies 

might be most lucrative. These relationships finally result into so-called alpha factors.  

Alpha factors can be summarized as quantitative factors that are indicative of an asset’s 

future return (or the return’s efficiency). Indeed, the term alpha stems from classical 

portfolio analysis where returns are explained by market risk or other factors (betas) 

and an additional portion through managerial skill (alpha). These alpha factors are 

then gathered in a combined alpha factor, i.e. a score for every asset in the universe 
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denoting how attractive it is from the perspective of the statistical relationship that was 

found. Next, portfolio construction is done by dividing assets in quantiles according to 

their alpha factors. For our long-short strategy, these quantiles are then used to go long 

the x% best stocks in terms of efficiency ratio and to go short the worst quantiles. The 

difference between the desired portfolio and the current portfolio then results in a trade 

list that is executed automatically using the Trading APIs, which rebalance the portfolio 

with the frequency that is defined by the programmer. 

 

Given these building blocks for developing algorithmic trading code, we can conclude 

that our approach to streaming equity price data and transforming it to efficiency ratios 

(expected excess returns over MVaR) already covers a large part of the Environment 

and Research building blocks. Therefore, in order to implement these ideas into a 

genuine strategy, we still need to integrate the existing code and ML frameworks with 

the Trading APIs. Given that these are typically written in Python, the integration can 

be done straightforwardly. However, we still need to define sensible constraints (in 

term of leverage, concentration, etc.) that make sense given our broad stock universe. 

These steps could be subject to further research (see 5.5). 
 

5.4 Implications of model mindfulness 
 
 

 
“If there is any risk related to the role of humans being overwhelmingly replaced by AI,  

that would be when humans stop thinking independently and autonomously.” 
 

Haruhiko Kuroda 

 

For an innumerable amount of times, this dissertation was skeptical about the fact that 

ML models are black boxes which focus on results and lose transparency in terms of 

the why and the how. We quickly realized that the most blatant issue with the model 

was that sometimes it did not converge in-sample, given that a combination model 

should at least be as strong as the strongest individual model in the features. Upon 

critical investigation, these nonsense results appeared to stem from a set of recurrent 
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data issues. The disappointingly low percentage of converging models underscored the 

importance of being skeptical about the results.  However, in contrast to a standard 

econometric regression framework, we cannot investigate the weights (i.e. the 

coefficients) and their significance using predefined tests. We resorted to mere backtest 

results to see whether roughness was a significant feature, but we never really 

understood why, apart from some theoretical conjectures on the link between 

roughness and risk models. We even went as far as making the link with algorithmic 

trading, such that trading decisions could be made based on this black box, i.e. black 

box trading.  

 

As a result, it makes common sense that this dissertation ends with the caveat it began 

with in the abstract and the introduction. The presence of appropriate governance 

around the proposed algorithms is more important than the integrity of the models or 

code itself. Governance relates to clear roles and procedures around the development 

of these algorithms, i.e. people taking up responsibility when these algorithms start to 

‘misbehave’. Data can always be abused, no matter how ‘objective’ the code claims to 

be. It always comes down to reducing perverse incentives, or the incentives that stem 

from people using algorithms they know will only work well in the short run by fudging 

the risks they take. In this train of thought, Emanuel Derman’s ‘Models. Behaving. 

Badly.’ (Derman, 2011) pretty much sums it up: “The syntax of finance and physics have 

become very similar, but the semantics are very different.” Financial data is peculiar in 

the sense that it is not deterministic, such that one could show almost anything by using 

the models and tools of the exact sciences on noisy financial data.  This corresponds to 

the disclaimer used in the introduction concerning models being analogies. Andrew Lo 

said: “The difference between data and information is narrative, the story we tell by using 

the data.” and this is exactly what all ML models do (Lo, 2018). Financial data, 

unfortunately, do not always speak for themselves. Data do not have a voice, so the 

modeler has the freedom to impose almost any kind of narrative he wants. We used 

this freedom to test whether different angles to calculate VaR could be combined based 

on roughness. However, this is only one way to look at the world. It enables us to 

understand only part of reality. It should therefore be used accordingly. Hence, instead 
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of emphasizing good backtests it is more important to try to explain why some backtests 

were considerably worse. In the eloquent words of Emanuel Derman:  

“A model is just a toy. A good toy doesn’t reproduce every feature of the real object but 

illustrates for its intended audience the qualities of the original object most important to 

them. Similarly, good models should aim to do only a few important things well.”  

In our case, we combined different models to reduce their individual bias and improve 

the overall backtests. That is a very clear objective for a machine learning model, such 

that there is no reason to assume that the algorithm understands context beyond 

roughness, let alone be good at anything else. Therefore, Black Swan events unknown 

to our system of input data, features and equations are likely to be handled as outliers, 

no matter how many crises we include in the training data and how well our code will 

adapt to new information. The most important limitation of our model is that the model 

is only as good as the quality and quantity of the available data. Data-heavy models 

naturally have a very data-dependent convergence of results. On this point, I would 

like to add a metaphor of my own, about a machine learning model and a genius kid:  

“An ML model is like a genius kid. It absorbs and retains information like no other kid. 

You could send her to a school where they teach quantum mechanics at the age of 6, she 

would play with it. However, we send our whizz-kid to a strange school; a school with no 

books or teachers, merely desks and walls. What we would find is that the kid would not 

seem to be the genius she really is.”  

What sometimes went wrong with our model, to continue the analogy, is that, even 

worse than these strange schools, we send our model to a terrible school:  

“In this school, instead of no books, there are some books with wrong information. They 

tell the kid an orange is an apple, and an apple is a pear. Now the outside world will think 

of the kid as retarded.” 

That is the problem with questionable data quality and machine learning models. The 

first school correspond to an environment where a powerful model has insufficient 

data, while the second school is a data set of dubious quality where a few anomalies 

ruin the whole thing. All things considered, we should see any model as a toy that 

represents only part of reality and emphasize its weaknesses (the qualities that were 

not modeled) more than its strengths. 
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5.5 Limitations of the set-up and recommended further research 
 
 

 
“There is a saying that bad traders divorce their spouse sooner than abandon their positions. 

Loyalty to ideas is not a good thing for traders, scientists - or anyone.” 
 

Nassim N. Taleb 

 

It is important to emphasize the limitations encountered during the thesis. I am not a 

mathematician, nor a computer scientist. Much like a fractal, one could zoom in on any 

section of this thesis and refine it, and again and again. “Get the fundamentals down, 

and you will improve the quality of everything you do.” is a popular saying. 

Mathematicians could easily improve and add to chapters 1 & 2, by including more 

models and by calibrating them more professionally. Computer scientists can 

undoubtedly make the code more correct and efficient, leveraging parallel computing 

or even quantum computing.   

Moreover, the code itself has some clear limitations. Very data-heavy models like our 

ML model mean very data-dependent convergence of results. This can be seen as a 

butterfly effect. The old analogy of a butterfly swinging its wings, which causes a 

tornado many miles away, really applies here. Strange singletons in the data, like 

reverse stock splits causing a sudden onetime +100% return can cause the model to 

show anomalous results. The irony that our model works best for benign datasets is 

that this was our initial critique on Gaussian and historical simulation models. The 

difference, however, is that when we include many crisis periods, our model learns how 

to better cope with it, in contrast to these static models. In the case of our model, we 

are not talking about LPHI events in the real return data, but anomalies like data quality 

issues (e.g. unexpected NaN values instead of prices). 

 

The different angle of this thesis allows for further research. First of all, the real value 

of the obtained efficiency scores (compared to the traditional Sharpe ratio) can only be 

discovered through the backtesting of strategies based on the concept (cf. 5.3). 

Secondly, marginal VaR is linked to our common perceptions of an asset’s beta (Jorion, 
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2000). If our approach towards calculating MVaR indeed appears to be useful, one 

could also wonder what this means for the implied beta. Is it possible to reverse engineer 

more ‘sophisticated’ betas from our predicted MVaR? If that would be possible, how 

effective would a dynamic beta strategy59 be for tactical asset allocation or security 

selection?  

Another set of models that were very briefly discussed are copula models. Copula 

models allow to model the dependence structure between variables in an elegant way. 

They were highly discredited after the CDO crisis, since the Gaussian version was an 

essential ingredient in the pricing of CDOs. This was mainly due to the fact that they 

used the simplest (Gaussian) version with only one static correlation measure. In 

general, however, copula models stay a very powerful tool to get a sense of the 

comovement structure between variables. We could wonder how we can implement 

copulas in combination with neural networks so that the comovement structure 

between our VaR features, which is implicitly understood by the machine, can be better 

understood by the modeler. 

  

Apart from these suggestions, I am quite keen to know how the model could be more 

refined from an overall perspective. How can one improve the efficiency of the model 

as it is today? How can it be speeded up to use in more real-time application? 

Furthermore, I used quite generalized hyperparameters for a simple DNN regressor. 

Maybe a completely different type of network would work better? There is a vast field 

of research devoted to the taxonomy of neural nets, where more appropriate 

architectures for this problem probably already exist. One of the most promising types 

are so-called GANs, or Generative Adversarial Networks, where different neural nets 

compete against each other, based on the principles of game theory, as to increase the 

overall model’s performance. Another interesting field are fuzzy logic models. 

Normally, computers (and thus neural nets) save data in ones and zeros. Fuzzy logic 

can be used to temporarily save data in a similar way to probabilities, i.e. a number 

between 0 and 1. So-called Genetic Fuzzy Neural Networks (GFNN) use fuzzy 

                                                
59 I.e. measuring the time-varying beta using this model, and adjusting the beta of the 
portfolio based on the strength of some market signal. 
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reasoning and could offer extra modeling opportunities that might be relevant for our 

problem. Lastly, reinforcement learning is doing a great job in improving AI models. 

For instance, think about AlphaGo’s victory against the world’s best Go player. In 

finance, reinforcement learning is, inter alia, used to optimize utility functions for 

agents based on risk and returns. Algorithmic trading already uses these concepts for 

autonomous trading agents. In these settings, so-called Q-learning defines rewards and 

losses that reinforce the algorithms, thus enabling a learning process. Very similar to 

our bespoke loss function, exceptions could be defined as losses and controlled losses 

can get rewards in a so-called Q-table. Therefore, integration of the concepts in this 

dissertation with Q-learning where agents have a more comprehensive sense of risk, 

might be a very interesting research path to pursue in the future. 
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