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Abstract – In light of the increased popularity and advantages of risk-based portfolio
optimization in general, the minimum drawdown or peak-to-valley loss portfolio in par-
ticular offers an (1) asymmetrical and (2) autocorrelated definition of portfolio risk that
results in improved long-run risk-adjusted returns. As a path-based optimizer, it imposes
an objective directly on the features of the portfolio path, rather than on some paramet-
ric representation of the input paths (i.e. a variance-covariance matrix). This poses the
modeling challenge of generating a host of paths that closely resemble the path features
we are optimizing for. The historical time-integrated mean of these path features gen-
erally does not equate their ex ante expectation, such that we propose to approximate
this forward-looking expectation using an ensemble mean simulated with a generative
machine learning (ML) model that learns to dynamically replicate the relevant path fea-
tures in synthetic samples. We introduce a kernel trick based on the universality of a
non-parametric embedding of paths, called the signature transform, to linearly approxi-
mate expected drawdowns. After emphasizing the relevance of risk-based optimization
in general, we delve into the properties of the min drawdown portfolio in particular.
We perform a long-run backtest on a multi-asset class universe of equities, fixed income,
commodity and real estate indices, and find superior risk-adjusted returns. We compare
naive historical simulation with ML-generated paths and find evidence that an ensemble
of noisy paths can bring us closer to the expected drawdown than a historical mean. Well
aware that ML comes at the price of increased model complexity, our conclusions highlight
the main opportunities and pitfalls of using data-driven methods for these applications.

Keywords : Portfolio Construction, Drawdown, Machine Learning, Signatures, Varia-
tional Autoencoder

1 Introduction

We have seen a proliferation of applications of risk-

based optimization, or portfolio construction with a

risk objective only, in recent years. The reason is

twofold. Firstly, expected returns required in mean-

risk optimization (such as mean-variance) are ex-

tremely hard to estimate and often introduce more

noise than signal to the model (DeMiguel, Garlappi,

and Uppal 2009). Secondly, increasingly popular

min vol indices and related exchange-traded funds

(ETFs) have delivered on- to above-par returns com-

pared to their reference benchmarks over the longer-

run1, while displaying lower volatility, hence offering

better risk-adjusted returns. Even for the ones with

on-par performance, the reduction of risk is highly

useful in new fintech applications such as robo-advisors,

where retail investors are notoriously sensitive to mar-

*1Ghent University, Sint-Pietersplein 6, 9000 Gent, Belgium
*2Corresponding author at emiel.lemahieu@ugent.be
1e.g. D ’Auria and McDermott 2017

ket fluctuations in terms of depositing, withdrawing

and even closing the account. To a certain extent

this is also true for traditional funds, but with less

sticky capital the need for a ’smoother ride’ invest-

ment becomes more prevalent. For reasons elabo-

rated below, drawdown optimization is particularly

adept to achieve a smooth ride, but it is still rela-

tively unexplored for these kind of applications.

This paper is structured as follows. In Section 2,

we introduce the minimum drawdown portfolio and

delve deeper into the properties that make it well-

suited for these applications. Section 3 discusses

the impact of the sampler method chosen for the

paths on which the objective is imposed. Section

4 elaborates the generative machine learning archi-

tecture, a variational autoencoder (VAE). In Section

5, we introduce a new machine learning sampling

method that linearly approximates expected draw-

downs. This allows for taking an ensemble mean of

noisy samples, instead of the historical time-integrated
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mean. Next in Section 6, we compare the long-run

risk-adjusted returns of the set of risk-based meth-

ods on a multi-asset class universe of US Bonds, US

Equity, NAREITs real estate and GSCI commodi-

ties. Section 7 discusses the advantages and possible

drawbacks of using machine learning for these prob-

lem settings. Section 8 concludes.

2 Drawdown optimization

For an N -dimensional universe of instruments, let

us denote byw the vector of weights wi, i ∈ {1, ..., N}.
Further, Σ is the sample variance-covariance matrix

of their historical return timeseries X : [0, T ] −→ RN ,

where xi,t = si,t/si,t−1 − 1, and S : [0, T ] −→ RN is

the T by N matrix of historical spot prices or in-

dex levels. For convenience, let us also write down

σ2 = diag(Σ), where σi corresponds to individual

asset i’s volatility. We introduce the minimum draw-

down portfolio in terms of these notations below2.

2.1 Minimum drawdown portfolio

The minimum drawdown portfolio is the solution

to the following linear optimization problem:

min
w

E(ξ(w))

s.t. ξt = mt −wSt

mt ≥ mt−1

mt ≥ wSt

wIN = 1

w > 0

(1)

where we minimize the expected drawdown ξ as a

function of portfolio weights w. The drawdown ξ

is a non-linear function of the portfolio path Pt =

wSt, ξt = max(maxti<t(Pti)−Pt, 0), but can hence

be written as a linear problem by instrument vari-

able mt which denotes the monotonic growth of the

portfolio value mt ≥ wSt. Chekhlov, Uryasev, and

Zabarankin 2005 show that the minimum drawdown

measure satisfies the properties of a deviation mea-

sure3 and generalizes them to a dynamic conditional.

The focal element of (1) for this paper is the expec-

tation E(ξ) which can be taken over time [0, T ] as

a (ergodic) time-integral, or integrated over a (non-

ergodic) noisy ensemble of paths (see Section 3).

2The benchmark portfolios - minimum volatility, inverse
volatility, equal weighting - are in terms of the above notation
introduced in Appendix 1.

3More specifically, (1) non-negativity, (2) insensitivity to a
constant shift, (3) positive homogeneity and (4) convexity.

Fig. 1: Example of ξ, mt and St for the US Equity

index (S&P500)

2.2 On the performance difference between

drawdown- and volatility-based meth-

ods

The main drivers of the theoretical performance

difference between the drawdown-based method and

volatility-based methods (cf. Appendix 1) are (1)

asymmetry (positive surprises are not penalized to

the same extent as negative ones), and (2) autocor-

relation (consecutive negative surprises are more pe-

nalized than lowly autocorrelated losses)4. The lat-

ter path dependency is both a key strength of the

approach and a key modeling challenge (see Section

3).

Let us start with a simple toy example, N=2, and

then refer to the real-life backtest in Section 6. The

example can be seen in Fig. 2, and is summarized in

Table 1. The example is constructed such that two

instruments Instr 1 and Instr 2 have (1) the same

volatility σ1 = σ2 over a one-year period (250 days)

of 9%, (2) a correlation of ρ = −0.5. The minimum

volatility portfolio is in this case equal to the inverse

volatility and the equally weighted portfolio, more

specifically5:

wInstr1 =
σ2
2 − σ1σ2ρ

σ2
1 + σ2

2 − 2σ1σ2ρ
(2)

wInstr2 = 1− wInstr1 (3)

Given that the volatilities are symmetric, it is easy to

see that wInstr1 = 0.5 = wInstr2 for the min volatil-

4These key differences are illustrated for a simple N=2 ex-
ample in Appendix 4.

5This result can easily be obtained by taking the La-
grangian of var(wInstr1X1+wInstr2X2), where var(Xi) = σ2

i
and solving for wInstr1. For completeness, this is included in
Appendix 3.
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Vol (%) ADD (%) w Instr1(%) w Instr2(%)

Min DD 6.85 0.53 75.29 24.71
Min Vol 5.86 0.66 50 50
Risk Par 5.86 0.66 50 50
Instr 1 9 0.55 100 0
Instr 2 9 3.52 0 100

Table 1: Toy example min vol versus min drawdown

ity portfolio, which is here equivalent to the inverse

vol and equal weighted portfolio.

When critically looking at Fig. 2 and the draw-

downs in Table 1 the instruments are far from ’sym-

metric’ to the risk-averse investor. Both display low

fluctuations, but Instr 1 has a steady increase (only

a 0.55% drawdown) over the year, while Instr 2 accu-

mulates small but steady losses (3.52% drawdown).

Of course, the mean-variance investor will notice that

the instruments seem to have different drifts, but

including drift into the model has the well-known

implications for overfitting and stability (DeMiguel,

Garlappi, and Uppal 2009). For the volatility-based

portfolios both assets are equally attractive in terms

of risk, and such an optimizer will have no reason

to divest low volatility instruments with persistent

or autocorrelated small losses. Table 1 shows the

optimal weights for the minimum drawdown portfo-

lio. As can be seen Instr 1 is more preferred, since

it has smaller losses and a shorter time to recover

from these small losses. Remark that it is not fully

concentrated in Instr 1 but has an approx. 75/25 dis-

tribution to achieve a 0.53% drawdown that is lower

than Instr 1’s drawdown.

Fig. 2: Toy example (N=2) of min vol and inverse

vol versus min drawdown

The analytical equivalent of Eq. (2) for the mini-

mum drawdown portfolio requires an assumption on

the path length and number of input paths as well.

Even in the simplest case N = 2, T = 2 and 1 in-

put path, the example becomes involved as Eq. (1)

creates a variable m and slack variable for each time

step and hence a factorial increase in complemen-

tary slack cases to be evaluated. We illustrate this

in detail in Appendix 4. Although a trivial scenario

compared to real-life applications with thousands of

optimization variables, it already illustrates the non-

linear and asymmetric definition of risk introduced

in Eq. (1).

3 Historical scenarios versus generative ML

For the volatility-based methods, the estimation

of the variance-covariance matrix Σ is a notoriously

difficult exercise 6. Σ is a parametric representation

of the input paths on which we impose the objective.

For the path-based method, however, we do not re-

quire an estimate of Σ from historical paths S but

rather rely on those paths directly in (1). Taking the

historical sample path, this results in one vector wSt,

t ∈ [0, T ] and the expectation E(ξ(w)) corresponds

to the historical time-integrated risk. This makes

the historical sample-based path method, when com-

pared to the sample-based volatility methods, com-

pletely parameter-free. As a key advantage over the

other methods, one may still wonder whether the his-

torical time-integrated average7 is sufficiently close8

to what we understand under expected drawdown:

ex ante drawdown. This boils down to the implicit

ergodicity assumption in sample-based methods:

E(ξ) =
∫ 1

0

p(ξ)dξ =
1

T

∫ T

0

ξ(Pt)dt (4)

where the time-integrated mean is assumed equal to

the true expectation. This further would imply that

for the expectation over many samples j ∈ [0, Ns]:

E(ξ) =
1

Nsk

∫ Ns

0

∫ k

0

ξ(Pt,j)dtdj (5)

the two integrals are commutative and equal to the

simple
∫ T

0
ξ(Pt)dt. This is not what we generally ob-

serve in the data, as Eq. (4) assumes there is no noise

in the observed ξ(Pt). By contrast, the non-ergodic

alternative implies that the integrals in Eq. (5) are

6E.g. due to the exponential scaling of the number of
parameters and non-stationarity (time-varying volatility and
correlation), which are tackled by shrunk covariances (Ledoit
and Wolf 2004) or multi-factor models, and autoregressive or
dynamic volatilities respectively

7For a formal definition see Peters 2019
8We will define this in the next section as the distance be-

tween simulated and true expected drawdown using the linear
signature approximation.
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non-commutative nor equal to the time-integrated

average, and Eq. (5) is closer to the true E(ξ). Eq.

(5) is an ensemble mean of many possible scenarios

that are noisy by definition. Formalizing a procedure

to generate these noisy samples is at the core of this

paper.

In this paper we consider two alternatives, and

propose two evaluation procedures. We compare his-

torical simulation with a recent neural architecture

called a variational autoencoder (VAE). These new

generative models allow for increased flexibility in

reproducing certain features of interest in the gener-

ated samples as compared to traditional Monte Carlo

(cf. Section 5). First, we evaluate the similarity be-

tween the observed drawdown distribution P(ξi) for
a range of scenarios i of both historical windows and

ML generated samples with their time-shifted coun-

terparts (future expected drawdown). Next, we inte-

grate both models in our optimizer and compare the

objective values in (1) with the out-of-sample draw-

down.

4 Variational Autoencoders

This section discusses in more detail the varia-

tional autoencoder architecture, before we tune its

objective to a proper Market Generator in the next

section. It converges fast9, is more stable than com-

peting architectures, and it allow us to interpret the

(conditional) distributions after training.

Below, we discuss the mappings fΘ(X) and f−1Θ (Z)

between the data and latent distributions, the orig-

inal loss function L(X,X ′) (which we will revise in

the next section), the training algorithm and the hy-

perparameters.

General architecture

The architecture of a VAE is summarized in Fig-

ure 5. As input we have the D-dimensional ambient

space X or the physical data domain that we can

measure X. Using a flexible neural network map-

ping fΘ : RD → RK ,K << N , called the encoder,

we compress the dimension of the data into a K-

dimensional latent space Z, e.g. 10-dimensional. Us-

ing the reparametrization trick (Kingma, Mohamed,

et al. 2014) we map Z onto a mean µ and standard

deviation σ vector, i.e. onto a K-dimensional Gaus-

sian, e.g. a 10-dimensional multi-variate normal dis-

9First experiments with VAE resulted in similar perfor-
mance metrics with GAN, where VAE was trained c.30 sec-
onds and GAN c.30 minutes.

tribution. Starting from multi-variate normal data,

we can recombine µ and σ into a K-dimensional Z.

The decoder neural network f−1Θ : RK → RD maps

the latent space back to the output space PΘ(X
′)

where X ′ can be considered reconstructed samples

in the training step, or genuinely new or fake sam-

ples in a generator step. The quality of the VAE

clearly depends on the similarity between P(X) and

PΘ(X
′).

Encoder - decoder networks

Let us now zoom in on fΘ(X) and f−1Θ (Z). Each

neural network consist of one layer of J mathematical

units called neurons:

fΘj = A(

D∑
i

θi,jxi) (6)

Every neuron takes linear combinations θi of the

input data point xi and is then activated using a non-

linear activation function A, such as rectified linear

units (ReLU), hyperbolic tangent (tanh) or sigmoid.

In this paper we use a variant of ReLU called a leaky

ReLU :

LReLU(x) = 1x<0αx+ 1x≥0x (7)

where α is a small constant called the slope of the

ReLU. All neurons J are linearly combined into the

next layer (in this case Z):

Zk :=

J∑
j

θj,kfΘj (8)

for every k in K. The decoder map can formally be

written exactly like the encoder, but in reverse order.

Loss function

The loss function of a VAE generally consists of

two components, the latent loss (LL) and the recon-

struction loss (LR):

L(X,X ′) = βLL + (1− β)LR (9)

The latent loss is the Kullback-Leibler discrepancy

between the latent distribution under its encoded

parametrization, the posterior fΘ(X) = PΘ(Z|X),

and its theoretical distribution, e.g. multi-variate

Gaussian P(Z). Appendix B in Kingma and Welling

2014 offers a simple expression for LL. The recon-

struction loss is the cost of reproducing PΘ(X
′) after

the dimension reduction step, and originally com-

puted by the root of the mean squared error (RMSE
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or L2-loss) between X and X’.

L(X,X ′) = β
1

2

K∑
k

(1 + σ − µ2 − exp(σ))

+(1− β)E(||X −X ′||2)

(10)

Training

In terms of training, the learning algorithm is quasi

identical to most deep learning methods. Optimal

loss values L∗ are determined by stochastically sam-

pling batches of data and alternating forward and

backward passes through the VAE. For each batch

the data is first passed through the encoder network

and decoder network (forward pass), after which L is

evaluated in terms of Θ. At each layer, the derivative

of L vis-a-vis Θ can easily be evaluated. Next (the

backward pass), we say the calculated loss backprop-

agates through the network, and Θ are adjusted in

the direction of the gradient ∇ΘL with the learning

rate as step size. The exact optimizer algorithm we

used for this is Adam (Adaptive moments estimation,

Kingma and Ba 2014). Finally, we also use a concept

called regularization, which penalizes neural models

that become too complex or overparametrized. We

used a tool called dropout, that during training ran-

domly sets a proportion of parameters in Θ equal to

zero, and leaves those connections at zero that con-

tribute the least to the prediction.

Hyperparameters

In summary, the hyperparameters of this architec-

ture are: (1) the number of neurons in the encoder,

(2) the number of neurons in the decoder, (3) the

number of latent dimensions K, (4) the learning rate

l and (5) the optimizer algorithm and (6) the dropout

rate, (7) the batch size Nb, (8) batch length k and (9)

number of training steps N . We opted for the follow-

ing set-up, which was optimized using Grid Search:

50, 50, 10, 0.001, Adam, 0.01, 50, 22, 1000.

Generation

After training, in the sampling or generation step,

we start from a random K-dimensional noise ϵ ∼
P(Z) which is K-variate Gaussian. Now, we sim-

ply need one decode step to generate new samples of

PΘ(X
′).

5 Machine learning on paths: a simple

Market Generator

Market Generators are generative machine learn-

ing models with the specificity of modeling financial

markets, such as spot asset prices S, option premia

and implied volatilities, or order streams in limit or-

der books. The topic has seen a recent surge in inter-

est in the quantitative finance community (Wiese et

al. 2020, Koshiyama, Firoozye, and Treleaven 2021,

Buehler et al. 2020) as generative machine learning

architectures10 have found their way in simulation

engines for optimal hedging, optimal order execu-

tion, backtesting trading strategies, and many more.

The aim of this paper is not to delve into their in-

ner technical details11, but to demonstrate their flex-

ibility on the use case explained in Section 3, namely

sampling realistic and predictive scenarios for a path-

based portfolio optimizer.

Machine learning on paths12 is a new subbranch

of statistical learning and stochastic analysis that

aims at summarizing path-structured data (often by

means of the so-called signature in combination with

a flexible mapping such as a neural network) and us-

ing that summary for inference or prediction on the

path (e.g. human activity, brain functioning, hand-

written digits, etc.). For the sake of space, we dis-

tilled two essential concepts from the field for our ap-

plication here: (1) the signature transform and (2)

the signature approximation.

Signature transform

The signature is defined in Eq. (11) and is the

sequence of all iterated integrals of a path.

Definition (Chevyrev and Kormilitzin 2016): The

signature of a path γ : [0, T ] → RD denoted S(γ)0,T

is the collection (an infinite series) of all the iterated

integrals of γ. Formally, S(γ)0,T is the sequence of

real numbers

S(γ)0,T = (1, S(γ)10,T , S(γ)20,T , ..., S(γ)D0,T , S(γ)1,10,T , S(γ)1,20,T , ...)

(11)

where the zeroth term is 1 by convention and the

10Most notably generative adversarial networks (GAN),
variational autoencoders (VAE) and restricted Boltzmann ma-
chines (RBM).

11For the architecture used here, refer to Section 4. For
the other architectures please refer to the references and the
references therein.

12For an introduction please refer to Lyons 2014, Levin,
Lyons, and Ni 2013.
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superscript runs along the set of multi-indices :

W = {(i1, i2, ..., ik)|k ≥ 1; i1, i2, ..., ik ∈ {1, 2, ..., D}}
(12)

We often consider the M -th level truncated sig-

nature, defined as the finite collection of all terms

where the superscript is of max length M:

SM (γ) = (1, S1(γ), S2(γ), ..., SM (γ)) (13)

where Sk(γ) denotes all the signature terms of order

k, e.g.

S1(γ) = (S(γ)1, S(γ)2, ..., S(γ)D) (14)

S2(γ) = (S(γ)1,1, S(γ)1,2, ..., S(γ)D,D) (15)

It offers a graded13 summary of paths, describing

global and increasingly local features and preserving

useful geometrical14 properties. The signature is a

bijective mapping between a path and a representa-

tion in a Hilbert space, that can be interpreted as

a feature mapping in the machine learning sense15.

Here we will focus on one property called the univer-

sality of the mapping, implying what we refer to as

the signature approximation:

Universality and the signature approximation

A continuous function of the unparametrized data

stream can be universally approximated by linear

functionals in the signature space (see Levin, Lyons,

and Ni 2013 Theorem 3.1):

Consider a compact set K ⊂ Ω([0, T ],RN ) and

denote by SM the signature transform truncated at

level M. Let f : K → R be any continuous function,

then for any ϵ there exists a linear functional L acting

on the truncated signature of degree M such that16:

sup
X∈K

|f(X)− ⟨L, SM (X)⟩| < ϵ (16)

One such non-linear function was elaborated in Sec-

tion 2.1, i.e. the expected time-integrated draw-

down of a single path f(P ) =
∫ T

0
(maxti<t(Pti) −

Pt)dt is non-linear and not differentiable due to the

max operation. Expensive sampling methods such

13For factorial decay, see Appendix 2, Eq. (26)
14For these properties, see Appendix 2, section on geometric

properties and financial interpretation
15E.g. for a maximum mean discrepancy (MMD) evalua-

tion.
16From SM being a tensor algebra of X it follows from the

Stone-Weierstrass theorem that the family of all linear func-
tionals on SM is dense in the space of continuous functions on
X.

as VAEs that numerically evaluate whether gener-

ated samples are sufficiently close to the original re-

quire (1) inexpensive criteria to converge with the

available data and (2) differentiable criteria, such

as commonly chosen squared error or cross-entropy.

Moreover, f is just the function that links a path to

its time-integrated expected drawdown in a compu-

tationally more efficient way (cf. infra), while the

error towards its expected drawdown is the distance

EB|⟨L̂, SM (Xorig)⟩ − ⟨L̂, SM (Xgenerated)⟩| where we

should take the mean distance (L2-norm) over the

batches B for each training epoch (See Appendix 4).

Therefore, we propose to initially use the training

sample for a linear regression (OLS) of shorter tra-

jectories (e.g. 20 days) on their drawdowns to find an

estimate L̂. Then we train a generative model where

the signatures of the generated samples are linearly

combined with L̂ into an expected drawdown, and

then compared with true expected (shifted) draw-

down. This custom loss metric constitutes a recon-

struction loss term in terms of Appendix 3 (section

on Loss Function).

As we effectively compare inner products between

mapped paths in Hilbert space, we can coin this lin-

earization trick a drawdown kernel trick. However,

the use of this trick can be extended to focusing

on other path features than expected (mean) draw-

down, such as dynamic generalizations of downside

risk measures (VaR, CVaR, etc.). This is one of the

opportunities discussed in Section 7. The detailed

algorithm is provided below:

Algorithm 1 Market generator for path feature f

Input Historical price paths X : [0, T ] → RN , hyperparameters
listed above + signature truncation level M and feature
weight α.

Output Trained VAE Market Generator gθ

1: procedure Train
2: Divide historical sample into batches B of length

k, calculate the signatures of these paths truncated
at level M, SB

M , calculate the drawdowns f of these

paths f(XB) =
∫ k
0
(maxti<t(X

B
ti
)−XB)dt denoted

f̂(Xb)

3: L̂←− LinearRegression(f̂(XB), SB
M )

4: Initialize the parameters θ of the VAE.
5: for i : {1, ..., N} do:
6: Sample a batch B and pass it through the en-

coder gθ and decoder network g−1
θ

.

7: Calculate expected drawdown E(ξ) of the output
sample X′ using the differentiable signature ap-
proximation: ⟨L̂, SM (X′)⟩

8: Define the reconstruction loss term as the
weighted average of RMSE error and drawdown
loss: LR = EB||X −X′||2 +αEB||⟨L̂, SM (X)⟩ −
⟨L̂, SM (X′)⟩||2

.

9: L = LL + LR

10: θ ←− θ − l
dL(θ)

dθ
11:
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Algorithm 2 Sampling from the Market generator
Input Trained VAE Market Generator gθ.
Output Ns Generated samples X’

1: procedure Generate
2: for j : {1, ..., Ns} do
3: Sample a random K-variate Gaussian variable Z
4: X′ ←− g−1

θ (Z)
5:

6 Long-term multi-asset class allocation

problem

We run a long-term (30 year) backtest on 4 broad

asset class indices: US Equity (S&P 500 index), US

Bonds (Treasury index), Real Estate (NAREIT in-

dex), and Commodities (GSCI). The backtest covers

Jan 1992 until Jan 2022, spanning the Dotcom bear

market, the 2007-2008 Great Financial Crisis (GFC),

and the 2009-2022 bull market (including the 2020

Covid collapse and sharp recovery).

Table 6 shows the performance of the Min Vol,

Inverse Vol, Equal Weighted, Historical Min Draw-

down (Min DD Hist) and Ensemble Min Drawdown

(Min DD Ens) strategies, in terms of average Re-

turn and Volatility (Vol), both annualized, Average

Drawdown (ADD) and the Sharpe ratio.

Portfolios were rebalanced monthly, using a rolling

historical window of 2 years.

Return (%) Vol (%) ADD (%) Sharpe

Min Vol 6.187 4.822 -2.126 1.283
Min DD Hist 6.967 5.905 -1.911 1.179
Min DD Ens 7.069 5.488 -1.827 1.288
Equal Weight 7.427 10.22 -5.806 0.726
Inv Vol 7.087 7.736 -3.793 0.916

Table 2: Backtest performance

Figure 3 shows the evolution of the hypothetical

portfolio paths over time (standardized to 100USD

at the 1st of Jan 1992).

Fig. 3: Theoretical evolution of a 100USD portfolio

The difference in risk is most pronounced by look-

ing at the evolution in drawdown (top-to-bottom loss)

over the course of the 30 years. Figure 4 shows the so-

called under-water curve for the Min DD Hist port-

folio versus an equal weighted portfolio. During the

DOTCOM crisis the -21% top-to-bottom loss of the

equal weighted portfolio was limited to -8% for the

Min DD Hist portfolio, for the Great Financial Cri-

sis (GFC) and the Covid pandemic those figures were

-50%/-13% and -28%/-10%.

While both strategies have an approx. 7% annual

return, given that some investors are particularly

prone to market fluctuations, these figures can make

the difference between staying invested or leaving the

market and never letting that 7% annual return ma-

terialize. Investors, and particularly retail investors,

have path dependent risk preferences.

Fig. 4: Under-water curve

7 Machine learning on paths: opportunities

and pitfalls

Generative machine learning opens new possibili-

ties to look at past data and build expectations for

the future. Rather than using historical data as a

given to build expectations over time, it looks at

chunks of that data, deliberately introduces noise to

those scenarios, and then uses an ensemble (the ex-

pectation over batches) to push the generator model

towards the right set of parameters that helps us dis-

tinguish between noise and the original signal in the

future. Ironically, by adding noise to the data we

find more structure, i.e. get closer to the true ex-

pectation, then by looking at the original samples.

It has great promise, but with that comes additional

caveats and risks.
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Opportunities - The promises of generative

ML for finance

We briefly discuss the opportunities below.

• A truly flexible mapping: neural networks

(GAN, VAE, RBM) have the promise to ap-

proximate the underlying data-generating pro-

cess (DGP), without requiring the statistician

to specify it a priori. Compared to traditional

Monte Carlo techniques, this has the potential

to replicate richer features of the data set.

• A truly flexible loss function: rather than

the mapping itself (the neural architecture),

the objective of the generative model (also called

the loss function, see Appendix 3) offers great

promise due to its flexibility. As illustrated in

this paper, the drawdown kernel trick can be

used to approximate expected drawdowns and

evaluate expected drawdown loss in a computa-

tionally efficient way. However, more path fea-

tures could be of interest to the modeler and

the signature kernel trick (Salvi, Cass, et al.

2021) can be leveraged for reproducing gen-

eral path features (such as dynamic general-

izations of other risk measures as value-at-risk

(VaR) and expected shortfall (ES/CVaR) on

the path space, e.g. conditional drawdown-at-

risk (CDaR)).

• Conditional sampling: Another opportunity

of not having to focus on the specification of the

underlying DGP is the inclusion of exogenous

variables in the simulation. Instead of a fully

endogenous model of risk as proposed here, one

could generate scenarios conditionally on eco-

nomic conditions and evaluate the impact on

the optimal portfolios. Conditional distribu-

tions have proven to better match the stylized

facts17 of financial timeseries in a handful of

applications (Buehler et al. 2020, Kondratyev

and Schwarz 2019).

• Efficient computing, parallelization and

quantum: A last obvious, but important, point

is the recent progress in high-performance com-

puting and quantum computing. This made

possible that expensive models that require thou-

sands of evaluation steps to match the pro-

17Cf. Cont 2001

posed criteria can be trained in a matter of

minutes rather than days. After training, sim-

ulation is instant, and this makes real time

calibration and optimization of (1) possible,

whereas traditional sampling methods are no-

toriously slow and sample-based optimization

is provably suboptimal.

Risks - Be careful what you wish for

• Data issues: It comes as no surprise that

increasingly data-driven portfolio optimization

methods become increasingly sensitive to data

issues. Firstly, proper data cleansing for miss-

ing data and outliers is of utmost importance.

The latter has been much debated, as outliers

are typically the most important features of the

data set. All in all, generative machine learn-

ing applications do a good job in generating

timeseries with fat tails and are often closer to

reality than traditional Monte Carlo that suf-

fer from the same problems. Secondly, data

availability can be a huge issue for data-driven

methodologies. We worked on a small N=4 use

case with relatively lots of data (30 years of

daily data or 7500 data points), but 7500 sam-

ples is very limited for larger universes. The

required number of samples depends on the use

case and the difficulty and rate of convergence

of the imposed objective. Caution and critical

inspection of performance criteria are advised

when training models, as compared to tradi-

tional analytical solutions a machine learning

algorithm can only be trained to a local opti-

mum.

• Interpretability: The generated paths should

by construction be loyal to the historical sam-

ple and the focus is on simulation rather than

direct prediction, so generative learning suffers

less from the black box perception than tradi-

tional discriminative learning. However, paths

are loyal but not identical, and the question

arises on how to interpret trajectories that di-

verge from what happened in the past. One of

the key properties of non-ergodicity is that his-

torical samples did not reach all their possible

states, such that such deviations are required

to get closer to the actual expected state. At

least that is the intuition, but this might still be
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confusing to quant modelers. Moreover, how to

interpret deviations between the ML optimal

portfolios from the historical sample optimal

portfolios? Generally, they have the promise to

be closer to the expected minimum risk but it

is far from trivial to interpret individual cases.

Finally, conditional sampling can help explain-

ing how the minimal risk portfolio is consti-

tuted when key economic conditions change.

This can help us using ML as an explanatory

tool, rather than a prediction tool.

• Model Complexity: The modest increase in

backtest performance induced by our Market

Generator came at a substantial cost in model

complexity. Not only for interpretability this

can be problematic, but also for the imple-

mentation cost and model risk. Implement-

ing this machine learning model is far from

trivial and requires resources that sample esti-

mates do not. Moreover, while it is known that

sample variance-covariance matrices and other

sample-based estimates misbehave (e.g. with

various curses of dimensionality they get unre-

liable really quickly with increasing N), there is

ample research as to how and when these mod-

els misbehave, so the experienced quant mod-

eler will account for that. With novel machine

learning methods, however, the main risk re-

sides in the unknown unknowns when suppos-

edly paradoxal results stem from some hidden

assumption in the model, that oftentimes be-

comes unhidden at the most unpleasant of tim-

ings.

• Architecture: The choice of the architecture

(GAN, VAE, RBM) can have a great impact on

the performance of the model depending on the

use case, both in terms of (1) statistical similar-

ity with the original samples, as well as (2) flex-

ibility of the model and (3) its computational

performance. Generative ML offers great tools,

but only in the hands of quant modelers who

know how to leverage them for their use case.

• Robustness: While the whole point of simu-

lation is to give more robust results in terms of

Eq. (1), the generative model itself can lack ro-

bustness in terms of its hyperparameter choice

(cf. Appendix 3). Standard techniques such

as hyperparameter optimisation (mostly some

form of Grid search with cross-validation on

the data) are a bare minimum, and one should

rather approach the whole modeling exercise

from data cleansing, architecture choice and

hyperparameter fine-tuning with due diligence.

8 Conclusions

This paper elaborated the opportunities and pit-

falls of using generative machine learning for finan-

cial applications, such as long-term investing based

on a sole risk objective. We started by compar-

ing volatility- with path-based methods, and delved

deeper into their performance delta. We then fo-

cused on the importance of the choice of the sampler

for data on which the objective is imposed. The min

risk objective should be seen as a ’deterministic’ ob-

jective, where the answer is already in the data. The

question is how to get most use of that data. A naive

historical viewpoint is not the best way to go, be-

cause the time-integrated expectation of risk is iron-

ically further away from the true expectation than

the ensemble mean of noisy, ML generated samples.

To use an analogy, to get a good perception of what a

human face looks like, it is better to first add random

attributes to the faces in your sample and then come

to a joint consensus about what a common face looks

like, rather then spending a lot of time watching ’fa-

miliar’ faces and overfitting your perception on some

of these characteristics. We concluded with a more

bird’s-eye evaluation of a data-driven approach for

these kind of quantitative finance problem settings.

9 Appendix 1: Risk-based portfolio

optimization

Risk-based portfolio optimization revolves around

optimizing your portfolio with a risk objective solely,

dropping expected returns (or assuming symmetrical

returns) as they often introduce more noise than sig-

nal to the problem. This appendix introduces three

benchmark methods.

9.1 Minimum volatility portfolio

The minimum volatility portfolio is the solution to

the following quadratic optimization problem:
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min
w

wΣwT

s.t. wIN = 1

w ≥ 0

(17)

In other words, we pick the portfolio weights that

minimize portfolio volatility, subject to making sure

that the weights add up to one and a long-only con-

straint. Compared to traditional mean-variance op-

timization the returns are implicitly assumed to be

symmetric, hence dropped from the objective.

9.2 Inverse volatility portfolio

The inverse volatility portfolio is composed such

that all asset classes have weights proportional to

their volatility. Without requiring optimization, we

simply set the weights equal to:

w = (1/σ1, ..., 1/σN ) (18)

We can, however, formulate the inverse vol portfolio

problem as optimization problem (17), where we as-

sume both symmetric returns and correlations. Then

the problem is reduced to the diagonal of Σ which is

exactly (18).

9.3 Equally weighted portfolio

The equally weighted portfolio allocates equal pro-

portions to all the assets in the investible universe:

w = (1/N, ..., 1/N) (19)

The ’1/N’-portfolio minimizes model risk and assumes

symmetrical returns, volatilities and correlations.

10 Appendix 2: Signatures

10.1 Iterated integrals

Let us recall path integrals. For a path γ : [0, T ] →
R and a function f : R → R, the path integral of γ

against f is defined by∫ T

0

f(γt)dγt =

∫ T

0

f(γt)
dγt
dt

dt =

∫ T

0

f(γt)γ̇tdt

(20)

in which context f is called a 1-form (Chen 1977).

The last integral is a Riemann integral. Note that f

itself is a real-valued path on [0, T ]. This is a special

case of the Riemann-Stieltjes integral of one path

against another (Chevyrev and Kormilitzin 2016).

In general, one can integrate any two paths on [0, T ],

κ : [0, T ] → R, γ : [0, T ] → R, against one another:∫ T

0

κtdγt =

∫ T

0

κtγ̇tdt (21)

Let us consider a particular path integral defined

for any single index i ∈ {1, 2, ..., D}:

S(γ)i0,T =

∫ T

0

dγi = γi
T − γi

0 (22)

which is the increment of the path along the dimen-

sion i in {1, 2, ..., D}. Now for any pair of indexes

i, j ∈ {1, 2, ..., D}, let us define:

S(γ)i,j0,T =

∫ T

0

∫ tj

0

dγidγj (23)

and likewise for triple indices in i, j, k ∈ {1, 2, ..., D}:

S(γ)i,j,k0,T =

∫ T

0

∫ tj

tk

∫ tk

0

dγidγjdγk (24)

and we can continue for the collection of indices i1, i2, ..., ik ∈
{1, 2, ..., D}:

S(γ)
i1,i2,...,ij ,...,ik
0,T =

∫ T

0

...

∫ tj+1

tj

...

∫ t2

t1

∫ t1

0

dγi1dγi2 ...dγik

(25)

which we call the k-fold iterated integral of γ along

{i1, i2, ..., ik}.
10.2 Geometric and financial interpretation

of a signature

As shown in (10.1), the geometric interpretation

of the first order is the increment of the path along

each dimension. In financial terms, this corresponds

to the drift. It can be shown that the second order

terms correspond to the Levy area (Chevyrev and

Kormilitzin 2016), or the surface covered between

the chord connecting the first and last coordinate in

each dimension and the actual path, corresponding

to a measure of volatility of the path. These two

global features are captured by the first two orders,

while more fine-grained, local features are captured

by higher-order terms, as becomes apparent when

looking at the factorial decay of S:

10.3 Factorial decay

One key property of signatures is factorial decay,

which makes it a graded summary of paths.

As an analogue to the distributional18 setting con-

sider the well-known principal component analysis

(PCA). In PCA we use linear combinations of the

data X to decompose it into its components that

maximise their variance while being mutually orthog-

onal (uncorrelated). It is equivalent to the eigende-

composition of the covariance matrix of X. A key

18Plain data generating processes of stochastic variables, in
comparison to path-structured sequential random variables.
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feature that we commonly see is exponential decay

or rate decay, namely that the sorted absolute val-

ues of the eigenvalues of the covariance matrix of

X : RD decay fast enough, i.e. the jth largest coeffi-

cient |β|j ≤ Aj−a, a ≥ 1/2, ∀j and constants a and A

do not depend on the dimension D. The latter sim-

ply implies that the first N components (N << D)

already explain a vast part of the shared variance in

the data set.

Informally, this intuition can be applied to paths

using signatures as well. Lyons 2014 shows that for

paths of bounded variation19 the following similar

norm can be imposed on the signature terms (with

1 ≤ i1, ..., in ≤ D):

||
∫

...

∫
dγi1dγi2 ...dγin || ≤ ||γn||1

n!
(26)

with

||γ||1 = sup
ti⊂[0,T ]

∑
i

|γti+1
− γti | (27)

where we take the supremum over all partitions of

[0,T].

This theorem proven in Lyons 2014 guarantees that

higher-order terms of the signature have factorial de-

cay, i.e. that the order of signatures imply a graded

summary of the path, first describing global and in-

creasingly more local characteristics of the path. This

implies that the truncated signature for increasing

orders throws away less and less information, similar

to the low-rank approximation in PCA.

10.4 Signature as path moment generating

function

Another key result that was recently developed by

Chevyrev and Oberhauser 2018 is that the signature

can be seen as the moment generating function in

the path space.

In the distributional setting there are well-established

metrics to compare two distributions. In machine

learning, we often encounter distributional distance

metrics from information theory, such as the Kullback-

Leibler (KL) and Jensen-Shannon (JS) divergences

between two distributions. For stochastic processes

that generate vector-valued data, there are well-known

statistical tests for determining whether two samples

are generated by the same stochastic process, such

as the sequence of (normalised) moments and the

Fourier transform (complex moments).

19γ : [0, T ] → R is of bounded variation if all changes∑
i |γti+1 − γti | are bounded (finite) for all partitions 0 ≤

t0 ≤ t1 ≤ ... ≤ T

For path-valued data, Chevyrev and Oberhauser

2018 introduce an analogue to normalised moments

using the signature. They prove that for suitable

normalizations λ, the sequence

(E[λ(X)m
∫

dX⊗m])m≥0 (28)

determines the law of X uniquely20. They argue that

the moments in the path space (or sequential mo-

ments) up to order m are preserved (i.e. a bijective

property) for the truncated signature up to order m.

Chevyrev and Kormilitzin 2016 proposes the use of

this result with efficient algorithms and tools from

machine learning such as MMD and kernel approx-

imation (e.g. Salvi, Lemercier, et al. 2021) for ma-

chine learning paths. Chevyrev and Kormilitzin 2016

also argue in favor of signatures as a provably optimal

feature map ϕ(.) for embedding paths generated by

a stochastic process in into a linear space. The rea-

sons are twofold: (1) universality, which implies that

non-linear functions of the data are approximated by

linear functionals in feature space (a key result used

in this paper) and (2) characteristicness, which is ex-

actly their merit, namely that the expected value of

the feature map characterizes the law of the random

variable uniquely.

20Up to tree-like equivalance, see Chevyrev and Oberhauser
2018.
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11 Appendix 3: Derivation of the minimum

volatility portfolio for N = 2

This section briefly explains the derivation of for-

mula (2). Denote again by Σ the variance-covariance

matrix. When N = 2 the two diagonal elements σ2
1

and σ2
2 are the volatilities, and the two off-diagonal

elements σ1σ2ρ12 are the covariances, where ρ12 is

the correlation.

The min vol portfolio can then be written as:

min
w1,w2

w2
1σ

2
1 + w2

2σ
2
2 + 2w1w2σ1σ2ρ12

+λ1(w1 + w2 − 1) + λ2(w1 + s+1 ) + λ3(w2 + s+2 )

(29)

or the variance of a two-asset portfolio written as

the sum of the individual variances, covariances and

Lagrange multipliers for the sum of weight and long-

only constraints in (17). s+i denote the slack vari-

ables for the wi ≥ 0 inequalities.

The first-order conditions equate the following set

of derivatives to zero:

δL
δw1

= 2w1σ
2
1 + 2w2σ1σ2ρ12 + λ1 + λ2 (30)

δL
δw2

= 2w2σ
2
2 + 2w1σ1σ2ρ12 + λ1 + λ3 (31)

δL
δλ1

= w1 + w2 − 1 (32)

δL
δλ2

= w1 + s+1 (33)

δL
δλ3

= w2 + s+2 (34)

Assuming the case s+1 > 0, s+2 > 0, complementary

slackness assures λ2 = λ3 = 0 such that:

w1(2σ
2
1 − 2σ1σ2ρ12) + 2σ1σ2ρ12 + λ1 = 0

2σ2
2 − 2w1σ

2
2 + 2w1σ1σ2ρ12 + λ1 = 0

(35)

from (30) and (31) respectively and w1 = 1 − w2.

Limited rearranging then yields:

w1 =
σ2
2 − σ1σ2ρ12

σ2
1 + σ2

2 − 2σ1σ2ρ12
(36)

It is clear that the other cases for s+1 and s+2 are less

relevant. Both equalling zero yields w1 = w2 = 0

and implies a violation of (32). One of them being

zero automatically yields the other weight being 1,

which is less optimal then the original case, unless

in the edge case where ρ = 1 and the volatilities are

not symmetrical, then the objective value is equal to

the minimum individual volatility and optimal.

12 Appendix 4: Derivation of the minimum

drawdown portfolio for N = 2

The minimum drawdown portfolio problem (Eq.

(1)) for N = 2 is elaborated below. In contrast to

the min vol portfolio for N = 2, the min drawdown

portfolio also requires an assumption on the length

of the path. We consider the simplest possible case

where T = 2.

minw1,w2
1
2

[
ξ1 ξ2

] [ 1
1

]
s.t.

[
ξ1
ξ2

]
=

[
m1

m2

]
−

[
w1 w2

] [ P11 P12

P21 P22

]
[

m1

m2

]
=

[
w1 w2

] [ P11 P12

P12 P22

]
+

[
s+1
s+2

]
[m2] = [m1] + [s+3 ]

[1] =
[

w1 w2
] [ 1

1

]
(37)

The Lagrangian is given by L below:

L(ξ1, ξ2,m1,m2, w1, w2) =
1

2
(ξ1 + ξ2)

+λ1(m1 − w1P11 − w2P21 − ξ1)

+λ2(m2 − w1P12 − w2P22 − ξ2)

+λ3(−m1 + w1P11 + w2P21 + s+1 )

+λ4(−m2 + w1P12 + w2P22 + s+2 )

+λ5(−m2 +m1 + s+3 )

+λ6(w1 + w2 − 1)

+λ7(w1 + s+4 )

+λ8(w2 + s+5 )

(38)

which already demonstrates that even in the simplest

case the min drawdown problem is tedious in terms

of notation. Let us therefore make another set of

assumptions and simplifications: s+4 > 0 and s+5 > 0

such that λ7 = λ8 = 0, w1 = 1 − w2 (removing λ6),

ξt = mt−w1P1t− (1−w1)P2t (removing λ1 and λ2).
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This gives the much simpler:

L(m1,m2, w1) =

+
1

2
(m1 − w1P11 − (1− w1)P21)

+
1

2
(m2 − w1P12 − (1− w1)P22)

+λ3(−m1 + w1P11 + (1− w1)P21) + s+1 )

+λ4(−m2 + w1P12 + (1− w1)P22) + s+2 )

+λ5(−m2 +m1 + s+3 )

(39)

First-order conditions now correspond to equating

the following derivatives to zero:

δL
δw1

=
P21 − P11

2
+

P22 − P12

2

+λ3(P11 − P21) + λ4(P12 − P22)

(40)

δL
δm1

=
1

2
− λ3 + λ5 (41)

δL
δm2

=
1

2
− λ4 − λ5 (42)

δL
δλ3

= −m1 + w1P11 + (1− w1)P21 + s+1 (43)

δL
δλ4

= −m2 + w1P12 + (1− w1)P22 + s+2 (44)

δL
δλ5

= −m2 +m1 + s+3 (45)

In theory, we now have to consider 8 cases for the

slack variables s+i . However, thanks to complemen-

tary slackness we can see that if (45) is active, i.e.

s+3 = 0, due to (42), (44) cannot be active. In other

words, when a new running max cannot be achieved

from combining the prices, (44) should not be active

and the other way around. This creates a non-linear,

asymmetric relationship between prices and weights,

and can in this simple case be expressed in terms of

the relative drifts.

Combining equations (43) and (44), and assuming

m1 = w1P11+(1−w1)P21 or the first portfolio value

is first maximum, s+1 = 0), we get:

w1(P12−P11)+(1−w1)(P22−P21)+s+2 −s+3 = 0 (46)

w1 =
s+3 − s+2 −∆P2

∆P1 −∆P2
(47)

The weights wi in this simple case with only 2 time

steps can be seen as proportional to their drift ∆Pi

when compared with the change in running max-

imum. Slack variable s+3 can be seen as the in-

crease in the running maximum ∆m = m2 − m1

if m2 > m1, else 0. s+2 is the delta between the

portfolio path at t=2, w1P12 + (1−w1)P22, and the

previous running max if no new maximum can be

achieved, else 0. Since we have separate cases for

when w1P11 + (1 − w1)P21 < w1P12 + (1 − w1)P22

and w1P11 + (1− w1)P21 > w1P12 + (1− w1)P22 we

achieve the non-linear and asymmetric relationship

discussed in Section 2.

In terms of autocorrelation, it is clear that as the

number of time steps T increases the number of slack

variables denoting ∆m increases and the host of non-

linear relationships depending on the evolution of the

portfolio value w1P1t+(1−w1)P2t, t ∈ [0, T ] will ex-

plode. It becomes notationally impossible, and logi-

cally impractical, to illustrate this in a simple exam-

ple. It is already clear from this example, however,

that a declining or negatively evolving portfolio value

over T increases the objective value, which illustrates

the impact of autocorrelated losses, as opposed to

volatility-based methods.
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Fig. 5: Variational autoencoder architecture
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