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Abstract

This thesis researches a new methodology for pairs trading. The methodology
is a two step process involving the selection of optimal pairs through a developed
expected signature model based on the relation between signatures and future spreads
and the relation between signatures and potential pairs trading PnL and optimal
trading of the selected spreads with deep reinforcement learning. The established
signature relations are evaluated and the expected signature model is benchmarked
against the classical cointegration selection model. Furthermore, the training of the
reinforcement learner is analysed and compared with a random agent. The trained
model is benchmarked against a random agent and a classic execution model based
on standard deviation. The results indicate a strong relation between signatures of a
spread and the potential pairs trading PnL. However, the expected signature model
struggles with the prediction of future spread values, mostly due to the lack of data.
On the execution side the deep Q-learning agent manages to outperform the random
agent and the benchmark when comparing cumulative rewards.
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Chapter 1

Introduction

Arbitrage is an established financial strategy that involves buying and selling assets
where the trader does not take an active position in the market. The trader has
no conviction on where financial markets will evolve to as he aims to profit from
temporary market inefficiencies that cause price discrepancies. Different arbitrage
strategies exists, but one of the most well known strategies is the concept of pairs
trading. Pairs trading is a relative-value arbitrage strategy and is still actively used
today by traders. The concept of pairs trading is straightforward: find two assets
who have moved together historically and when the spread between the prices widens,
buy the losing asset and short the winning asset. If history repeats itself, the asset
prices will converge again and the previously losing asset will win while the previously
winning asset will lose. Pairs trading is classified under the statistical arbitrage
trading methods given that it relies on statistical information, the fact that two
assets are mean-reverting, in order to apply arbitrage. Arbitrage here assumes that
the buy and the sell is dollar neutral, meaning the assets one holds have the same
monetary value and even each other out, lowering the risk towards the market.

Pairs trading typically consists of two consecutive processes. The first process is
the selection of optimal pairs based on historical prices and price moves. The ideal
pair has a long standing mean-reverting relationship with a highly volatile spread
creating many trading opportunities. The second process is the actual trading of the
spread between the two selected assets. Timing is key here as the trader wants to
take position when the price spread is at its maximum and wants to exit the position
when the price spread is at its minimum, before increasing again and creating a new
trading opportunity.

Recent developments in the area of machine learning have provided promising
frameworks to increase profitability of trading in financial markets. One of these
developments is reinforcement learning, a third branch inside the machine learning
universe next to supervised and unsupervised learning. In reinforcement learning, an
agent interacts with the environment. From this interaction comes a reward or a
punishment for the agent, and based on the accumulation of rewards/punishments
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1. Introduction

the agent is capable of learning a specific task. In theory, it should then be possible
to build an agent that learns how to execute a pairs trading strategy on a provided
universe of assets. One of the major drawbacks of this method, however, is the
amount of data that is required for the agent to learn. The more complex the task
we expect the agent to learn, the more data is required.

In our research we intend to use reinforcement learning to create a profitable pairs
trading strategy. In order to overcome the issues with the required data we simplify
the task for the reinforcement learner substantially by making an optimal selection
of pairs before feeding the selected pairs to the reinforcement learner, which then
learns to optimally trade the price spread between the assets in a dollar-neutral way.

While there exists classical methods for selection of pairs for pairs trading, like
minimal price distance strategies and co-integration strategies, these strategies focus
more on finding historical mean-reverting pairs and less on potential profitability for
a trading strategy. In our research we present a data-driven methodology based on
truncated signatures to select the optimal pairs with as goal maximizing the potential
profitability for pairs trading. Signatures are a mathematical technique coming forth
from rough path theory, where they are used to describe the interactions of complex
oscillatory systems. These signatures allow us to use high-dimensional information in
time series while working in a linear setting, maximizing the time series information
use while keeping the model complexity low.
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Chapter 2

Literature Review

With at least a 40-year history on Wall Street, there is an abundance of research
on different approaches to pairs trading. Hence, the first section of the literature
review describes the concept of pairs trading and discusses several classic and more
modern approaches. The second section looks at the concept of signatures and
their characteristics and discusses how these signatures can be a helpful tool when
identifying pairs for pairs trading. The third and last section provides insight in
reinforcement learning, its required building blocks, and the different approaches
available to design a reinforcement learning agent.

2.1 Pairs trading

Pairs trading belongs to a group of statistical arbitrage strategies given it tries to find
and profit from arbitrage opportunities based on statistical properties of different
assets in the asset universe. The pairs trading approach is a relative-value arbitrage
strategy that aims to create a positive return from selling one asset while buying
another in a dollar neutral fashion (buying and selling for equal dollar amounts).
The ideal asset pair for pairs trading is a pair of assets that is mean-reverting over
the long run, but has a highly volatile spread. If such a pair can be identified, the
pairs trader shorts the better performer and goes long on the under performer given
it is the expectation that the better performer will loose over the short term and
the under performer will win again over the short term. In this case a profit would
be made on both the short position and the long position. However, should the
market go through a general increase(decrease) over this time period, the loss of
the short(long) position will be offset by the double winnings on the long(short)
position. Because of this return behaviour we can call pairs trading a relative-value
arbitrage strategy. The return only relies on the relative value between the chosen
assets and is mostly independent from the general market movements. Figure 2.1
provides a schematic overview of what a pairs trading strategy looks like. In the
figure, the position of the trader on the spread is shown next to the normalized asset
prices. The trader opens a position when the spread between the normalized prices
is substantially large and closes the position when the spread is substantially close to
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2. Literature Review

zero. Important to note is that it is irrelevant for the spread which asset is winning
and which asset is losing. It is clear that when looking for optimal pairs a volatile
spread creates trading opportunities, while the mean-reverting character of the assets
keeps the spread stable over time.

Figure 2.1: Pairs trading example on a single pair of assets Kennecot and Uniroyal,
which shows the daily normalized asset prices of both assets, and the positions taken

over a trading period of 6 months [Gatev et al., 2006].

Pairs trading is said to be one of the products of a group of Wall Street quants under
Nunzio Tartaglia with backgrounds in physics, mathematics, and computer science.
This group was active during the mid-1980s at Morgan Stanley. One of Tartaglia’s
proteges was David Shaw, the now billionaire hedge fund manager and founder of D.
E. Shaw. While already in use for multiple years in the industry, [Gatev et al., 2006]
is one of the first works that puts pairs trading in the academic spotlight. The
first version of this paper goes back to 1998. Shortly after, [Vidyamurthy, 2004] was
published which is the first widespread book describing a quantitative approach
to pairs trading. [Elliott et al., 2005], [Do and Faff, ], [Engelberg et al., ], are other
popular works from around the same period covering pairs trading. Although cited
works all cover the subject of pairs trading, different techniques for identifying pairs
and trading the spread are researched and discussed. [Krauss, 2017] provides a
review and outlook on pairs trading and several popular approaches accompanied
by representative studies on these approaches. In the classic literature on pairs
trading, two and by extent three large groups of methods exist to identify optimal
pairs. The first group is the group of distance approaches, the second group is the
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2.1. Pairs trading

group of cointegration approaches, and the third group concludes everything that
can not be counted towards the previous two groups. It is interesting to note how
[Do and Faff, ] mentions that the classic approaches have become overcrowded and
that their profitability is on a downward trend. In the following subsections we cover
the three different approaches. After pair selection, different methods are applied to
optimally trade the pairs. A final subsection covers some of these execution methods
and their advantages and disadvantages.

2.1.1 Distance

This collection covers all methods that determine co-moving assets based on a dis-
tance metric. The distance metric is used to measure the difference in normalized
asset prices at every point in time of the covered historical period. This data is then
used to create a single metric that describes how close two assets move together. An
example of this comes from [Gatev et al., 2006], where the sum of Euclidean squared
distances (SSD) is used as the co-moving metric. The big advantage of this method
is that it is straightforward to build and to execute. However, the method has some
major drawbacks. A first drawback is that the use of this method is analytically less
optimal given a pairs trader is looking for pairs that would maximize profit under a
pairs trading strategy, while the most optimal pair of the SSD approach has a score
of zero. This means that the most optimal pair according to this method would not
provide any trading opportunities at all. Despite these drawbacks, Gatev’s research
still reports a positive return. [Do and Faff, ] expanded on the work of Gatev, by
refining the selection criteria to improve pairs identification by only allowing match-
ing based on Fama-French industries and by expanding the historic data in scope.
The top portfolios incorporating these industry restrictions also turned out to be
profitable, even when including trading costs, and the study furthermore supports
Gatev’s findings, helping establishing pairs trading as a capital market anomaly.
[Chen et al., 2019] also builds on the same data and time frame as Gatev. However,
they opted for the Pearson correlation between historical prices to determine optimal
pairs.

2.1.2 cointegration

Instead of looking at the spread as the distance between prices, this group of methods
focuses on cointegration between time series. The idea of cointegration assumes
that two separate variables that are non-stationary (like two asset prices) can be in
equilibrium if there exists a combination of the variables that is stationary, otherwise
any deviation from the equilibrium will not be temporary. This method assumes
that co-moving asset prices are co-integrated. [Vidyamurthy, 2004] is one of the most
cited works regarding pairs trading through cointegration. The research describes
the selection of pairs as a two step process. The first step is making a pre-selection of
pairs based on fundamental or statistical characteristics of the pairs. The second step
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is testing the pre-selected pairs on cointegration by means of a cointegration test,
which, for their research, is an adjusted version of the Engle-Granger test. However,
there exist other cointegration tests. [Rad et al., ] lays out a step-by-step empirical
application of a cointegration approach on the same data used in [Gatev et al., 2006].
The pre-selection consists of using the sum of Euclidean squared differences over a
one year period. We’re mostly interested in the pairs that have a low SSD value.
From the SSD ranking, only the 20 best pairs are retained that are also co-integrated
according to the Engle-Granger test. While the cointegration test is more statistically
advanced compared to the distance method, there are several disadvantages. First,
the pre-selection, which can be a manual exercise, makes it more difficult to work
with a large asset universe. Second, a pre-selection method like the SSD pre-selection
creates a clear bias. By looking at this ranking, it makes sense that much of the
same pairs are selected when comparing to the distance method. To avoid this
bias, more elaborated, end-to-end cointegration-based methods were introduced in
[Huck and Afawubo, 2015], and [Caldeira and Moura, ]. Next to the pre-selection
bias, the cointegration approach has the same problem as the distance approach
given the selection of pairs only focuses on the co-movement and not on the potential
trading opportunities.

2.1.3 Other

Other than the distance approach and the cointegration approach, different ap-
proaches have been researched. [Xie et al., 2014] proposes a copula-based approach
as a generalization for the distance method. The copula method is an effective tool
to model the connection between individual marginal distributions and their joint dis-
tributions. According to [Xie et al., 2014], this method brings two main advantages.
The first advantage is the separate estimation of marginal distributions of individual
variables. The second advantage is that different dependency structures between vari-
ables can be modeled. Their research leverages these advantages to identify optimal
pairs for pairs trading through the distribution of asset prices. [Han et al., 2023] and
[Sarmento and Horta, 2020] provide a modern machine learning approach to pairs
trading by leveraging unsupervised learning techniques like clustering in order to gen-
erate a pair selection. The clustering can be both fundamental (industry, financials,
..) and statistical (distance, distribution, ..). [Huck, 2009] also reverts to machine
learning in order to forecast returns for each asset, using Elman neural networks.
Based on the forecasts a ranking of pairs optimal for trading is generated and the top
pairs are selected for trading. [Avellaneda and Lee, ] proposes an approach based on
principal component analysis (PCA) presenting positive returns.

2.1.4 Trading

Once the optimal pairs for pairs trading are identified, it is key to optimally trade the
spreads to maximize the profit from the trading strategy. Different methods have been
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applied for the strategies mentioned above. In [Gatev et al., 2006] and [Do and Faff, ]
trades are opened when the spread diverges by more than two historical standard
deviations and closed upon mean-reversion or at the end of the trading period.
Figure 2.1 shows the positions taken based on this strategy for a given pair of
assets. [Jacobs et al., 2014] tested a variant of this strategy where they found that
pairs opened on days where a high quantity of unexpected new information was
provided to the market were more likely to converge and deliver profit. On timing
[Huck, 2015] found that timing volatility does not improve performance of the trading
strategy. The advantage of this strategy is that it is simple and easy to execute.
However, there are multiple disadvantages. Firstly, there is a chance of missing
out on potential profits if the spread continues to diverge before conversion start.
Secondly, the spread between two assets might never fully converge before divergence
takes place again. Hence, the position will stay opened and again potential profits
are missed. [Vidyamurthy, 2004] proposes a more sophisticated approach through a
multiple thresholds design, where with counting of cross-overs and regularization,
multiple thresholds are found. However, this approach also considers a one technique
fits all. [Elliott et al., 2005], [Cummins and Bucca, 2011], [Bertram, 2010], model a
spread as a symmetric Ornstein-Uhlenbeck process and either determine an analytical
solution (Bertram), or develop a threshold solution based on the time series structure
of the spread.

2.2 Signatures

2.2.1 Rough Path and Signature

In order to capture the time series of asset prices in their full extent and to be able
to extend the traditional framework of working with time series for pairs trading
to a more advanced level, we rely on the theory of rough paths. The theory of
rough paths is a mathematical framework described in [Lyons, 2014] that tries to
capture and refine the interaction between highly oscillatory and non-linear systems.
Often time series cannot be described by a smooth derivable function, but require
a more advanced approach. From a mathematical perspective, the theory of rough
paths tackles the challenge of describing a smooth but potentially highly oscilla-
tory path. While first applications appeared in automated recognition of Chinese
handwriting and extending Ito’s theory of stochastic differential equations (SDEs),
more recent applications can be found in finance related topics [Gyurkó et al., 2013],
[Futter et al., ]. This makes sense given that assets prices and asset returns can be
interpreted as a rough path. In order to be able to capture all required information
from such a rough path we will rely on the rough path theory and more specifically
on signatures, which is a tool developed to support the framework of the rough paths
theory. The signature structure provides a hierarchical interpretation, where the
low-order components of the signature capture broad path attributes and where
high-order components potentially reveal intricate characteristics of the path. In
short, one can say that a signature is an infinite vector that describes both the
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temporal and geometric properties of a path.

More formally we can describe the signature transformation of a path X : [s, T ]→ Rd

between fixed time s and t with Equation 2.1. Let T((Rd)) := ⊗∞
k=0(Rd)⊗k represent

a tensor algebra space, allowing a comprehensive representation of the signatures of
Rd-valued paths, then

Xs,t = (1,X1
s,t, ...,Xn

s,t, ...) ∈ T((Rd)) (2.1)

where the n-th order of the signature is defined by Equation 2.2, called the n-th
order iterated integral,

Xn
s,t =

∫
s<u1<...<un<t

∫
dXu1 ⊗ ...⊗ dXun ∈ (Rd)⊗n (2.2)

which results in signature X≤∞
0,T looking like Equation 2.3.

X<∞
0,T =


X∅

0,T︸ ︷︷ ︸
=1

,


X1

0,T
...

Xd
0,T


︸ ︷︷ ︸

X1
0,T

,


X11

0,T . . . X1 d
0,T

... . . . ...
Xd1

0,T · · · Xdd
0,T


︸ ︷︷ ︸

X2
0,T

, . . .


(2.3)

The signature of a path defined in Equation 2.1 can be truncated at any finite
order N ∈ N. The truncated signature is given by Equation 2.4. The truncated
signature preserves the first dN+1−1

d−1 iterated integrals. The factorial decay of ne-
glected iterated integrals ensures a minimal information loss due to truncation
[Gregnanin et al., 2023].

Xs,t = (1,X1
s,t, ...,XN

s,t) (2.4)

.
Equation 2.4 corresponds to the monomials up to order N of the path X. Indeed,

as we know that for scalars the polynomials, the power series Xn, allow us to ap-
proximate Lipschitz smooth functions by means of Taylor expansion [Patrinos, 2023],
Equation 2.2 offers a non-commutative equivalent for tensors. This means that
when X is not a scalar but a path, classical products in the exponential function
are replaced by tensor products. The other way around, if X would be a one-step
one-dimensional path from 0 to T assuming XT , i.e. a scalar, the tensor products
in Equation 2.2 could be replaced by simple scalar products and the n-th order
signature would correspond to the n-folded integral on dXt. The n-folded integral
on dXt would just be the area of the n-dimensional simplex, i.e. Xn

T /n!, which leads
us to conclude that indeed expression 2.2 brings us to the classical Taylor series for
the exponential function. By means of the Stone-Weierstrass theorem, one can then
show that the universal non-linearity of signatures (applying linear functionals to
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signatures to approximate non-linear functionals on paths) is nothing but the Taylor
approximation equivalent for paths rather than scalars [Lemahieu et al., ].

2.2.2 Geometric interpretation

From the definition given above, we can illustrate how the signature is a geometric
description of your path. To show this, we investigate the lower order signatures of a
two dimensional path. The first order signature is calculated by Equation 2.5, which
represents the trend of the time series.

X1
s,T =

∫
s<t<T

dXt = XT −Xs (2.5)

Each element is the increment of the path on the corresponding axis over the time
interval [s, T ]. They denote the displacement of the given path either vertically or
horizontally. Figure 2.2 is a representation of the first order signature of two different
volume profiles. The figure shows how the first order signature only relies on the
beginning and the end point of the path. This means that for different paths with
the same coordinates for beginning and end point, the first order signature is the same.

Figure 2.2: The figures shows the first order signature for a back-loaded(left) and
front-loaded(right) volume profile. The first order signature for both volume profiles

is the same given their start and end point is the same [Gyurkó et al., 2013].

The second order signature of a two dimensional path is the two-fold iterated integral
of the path, which contains four elements described by Equation 2.6.

Xi,i
s,T =

∫
s<t2≤T

∫
s<t1≤t2

dXi
t1dXi

t2 = 1
2!

(
Xi

T −Xi
s

)2
,

Xi,j
s,T =

∫
s<t≤T

∫
s<t1≤t2

dXi
t1dXj

t2 , (2.6)

Where i and j indicate the dimensions, either 1 or 2, The first of the two Equations
from 2.6 is proportional to the square of the increment. The second equation can
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Figure 2.3: This figure shows the areas that are described by the 2-fold iter-
ated integral of a 2D path where the dimensions are different. The third figure
shows the difference between these integrals, which provides you with the Levi area

[Gyurkó et al., 2013].

be explained by looking at Figure 2.3, which shows the surface for Xi,j
s,T and Xj,i

s,T

starting from the left. The third graph in the figure shows the Levy area, which is
the difference of the first and the second iterated integral.

For a two dimensional path, the interpretation of a k-fold integrated integral with k
larger than 2 is not trivial anymore, and cannot be shown as a surface. However,
one can extend the logic to a three dimensional path where the one, two, and three
fold iterated integrals are units of displacement, area, and volume. This provides an
intuition of how a signature can be used in order to describe a path. While the first
and second order can be easily interpreted, the higher order signatures still carry
information that can be useful when analysing the path for modeling purposes.

2.2.3 Signature properties

Given the intuition of a signature, we can elaborate on the attractive properties of
signatures that can be used for modeling purposes. Signatures have some interesting
characteristics like Chen’s identity, invariance under reparametrisation, linearity,
uniqueness, and universality. Uniqueness and universality are the two properties of
main importance to our research. In particular, the uniqueness property highlights
the relation between paths and their signatures; the truncated signature of a path is
regarded as a projection of the path to a lower dimensional space. This translates
an infinite dimensional time series into a finite dimensional vector describing the
temporal and geometrical properties of the path. The universality property, allows us
to prove that the lead-transform and the lag-transform both preserve the signature
of data streams [Gyurkó et al., 2013]. Furthermore, the universality principle states
that linear functionals on the signature are dense in the space of continuous functions
on compact sets of paths, which allows to approximate any non-linear functional in
the time series space as a linear functional in terms of the signatures of the time series
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[Futter et al., ]. In other words, the uniqueness property indicates a unique relation
from the path to the signature and the signature to the path for some underlying
distribution that generated the path, while the universality property allows us to
develop a closed form linear expression in the signature space describing a nonlinear
relation between paths.

2.3 Reinforcement Learning

Optimal trade execution is widely studied in academia and certainly in industry given
it determines for a large part the profitability of a trading strategy [Deng et al., 2017],
[Zhang et al., 2019], [Liu et al., 2018], [Stefan Jansen, 2020]. Provided one is able
to select an optimal pair for pairs trading, the actual profit is made by taking and
exiting a position on the spread at the right time. Even though the problem in
our research is reduced to trading only a single spread, there are still complex and
unknown market dynamics that pose a significant challenge for the development and
execution of an optimal trading strategy. These unknown dynamics in a live market
make reinforcement learning (RL), with its interactive and model free nature, an
attractive method for learning an optimal trading strategy [Karpe et al., 2020]. The
first part of this section provides an introduction on reinforcement learning and its
theoretical basis. The second part of the section focuses on methods to solve the RL
problem.

2.3.1 Introduction

In reinforcement learning one models the problem at hand as a Markov Decision
Process (MDP). A Markov Decision Process provides a mathematical framework
for modeling decision making problems consisting of three main elements. The first
element is a set of states S, where a state is a description of the problem environment.
The second element is a set of available actions A, which are the possible actions that
can be taken by the decision maker or agent. Every action will trigger a reaction
from the environment in the shape of a reward R, which is the third element. Figure
2.4 provides a schematic overview of the interaction between the agent and the
environment. The figure shows how action At triggers a reward Rt+1 and potentially
alters the environment to a new state St+1.

The goal of reinforcement learning is for the agent to learn an optimal policy π∗(a|s)
that indicates which action a to take in each state s in order to maximize the
total reward during an episode. An episode is a period consisting of different time
steps and can have a natural ending (a game of chess) or an artificial ending (100
trading days). This means that the action decided by the policy should not only
take into account the direct reward of this action, but also how this action will
influence future rewards. E.g., one can take a pawn in chess but because of that
move and direct reward lose the game several moves later. In order to know which
action to take at each state in order to improve the outcome, the agent requires
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Figure 2.4: The concept of reinforcement learning for the step from time t to time
t+1, where the agent interacts with the environment through an action, and the
environment changes given the agent a reward and a description of its new state

knowledge about the state in the form of a value for the state or the state-action
combination. These values are unknown to the agent at the start of the learning
process and are updated throughout. Based on these updated values, the original
policy of the agent is adjusted to make it more optimal and to maximize reward.
This process of updating the knowledge about the states and updating the policy is
called Generalized Policy Iteration (GPI) [Sutton and Barto, 2018]. Typically, the
value of a state is defined by a value function v(s), while the value of a state-action
pair is defined by action-value function q(s, a). Equation 2.7 and Equation 2.8, define
these functions respectively. The value of a state s is the expected value of the sum
of discounted future rewards Gt given the current state under current policy π, while
the value of a state-action pair (s, a) is the expected value of the sum of discounted
future rewards given the state and the action following a policy π. γ is the discount
factor, has a value between zero and one, and is a measure for how much future
rewards are values compared to the immediate reward of an action.

vπ(s) = Eπ [Gt | St = s] = Eπ

[ ∞∑
k=0

γkRt+k+1 | St = s

]
(2.7)

qπ(s, a) = Eπ [Gt | St = s, At = a] = Eπ

[ ∞∑
k=0

γkRt+k+1 | St = s, At = a

]
(2.8)

These equations can be rewritten as Equation 2.9 and Equation 2.10 respectively,
which are known as the Bellman equations. s′ represents the next state, r the direct
reward, and the function p(s′, r|s, a) represents the probability of reward r and next
state s′ given the current state s and taking action a and is called the dynamics of
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the environment. Knowing these values, the policy can be improved to be improved
to better approximate the optimal policy.

vπ(s) =
∑

a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s′)] (2.9)

qπ(s, a) =
∑
s′,r

p(s′, r|s, a)[r + γvπ(s′)] (2.10)

2.3.2 Solution methods

There exists a closed form solution for the optimal policy and optimal value function
through dynamic programming and the Bellman equations given the dynamics of
the environment are fully known. In this case the state and state-action values
can be calculated from start to end. However, in most real-world applications of
reinforcement learning, these dynamics are unknown. One solution could be to
approximate these dynamics and continue using dynamic programming, however,
this turns out to be very difficult given all the different aspects that can be relevant
for an environment. Two different solutions are provided by reinforcement learning
literature that use the recursive relationship in the Bellman equations. The first
method to determine the optimal action-value functions and the optimal policy is the
Monte Carlo (MC) method. The Monte Carlo method only requires experience and
does not require any knowledge of the environment’s dynamics. In short, the MC
method simulates entire episodes and uses the experience to update the action-value
function for every state and every action. This method is very powerful given no
dynamics are required, however, requires to simulate entire episodes to learn the
action-value functions and to adjust the optimal policy. The second method available
is Temporal-Difference (TD) learning. Temporal-difference learning is a combination
of learning by experience of the Monte Carlo method and learning through the
model of the Dynamic Programming method, by updating estimates based in part on
other learned estimates, without having to wait for the final outcome of an episode.
A first advantage of the Temporal-Difference method is that just like the Monte
Carlo method there is no model required for the dynamics of the environment as
the method learns from experience. A second advantage of the TD method is that
the method can be naturally implemented in an online setting. Where for MC
entire episodes were required, action-values are updated at every step. This is an
attractive advantage when working in financial markets where the agent would need
to trade in a live market. A final advantage of TD over MC is that Monte Carlo
needs to ignore or discount some of the episodes where experimental actions were
taken, which can slow down the learning of the agent. TD methods however, are less
susceptible to these problems as they can learn from each state transition regardless
of the actions that are taken later. Figure 2.5 provides a schematic overview on how
value functions are updated based on the different methods [Sutton and Barto, 2018].
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Figure 2.5: The figure illustrates on what basis the value of a state is updated
based on three different methods. Left, the MC method, bases the update on one
entire episode. Middle, the TD method, bases the update on one step of an episode.
Right, the DP method, bases the update on knowing the environment dynamics and

calculating the expected value [Lilian Weng, 2018].

A distinction has to be made between On-policy and Off-policy TD methods. The
difference between On-policy and Off-policy is in the policy control, how the policy
is adjusted with each adjustment of the state-action values. For On-policy TD, the
same policy that is used to generate data of state transitions, is also the policy
that is being adjusted into the direction of the optimal policy. For Off-policy TD,
the policy control happens separately, meaning there is a policy to generate the
state transition, and a policy that is being updated to approximate the optimal
policy. Off-policy TD is better known as Q-learning. An advantage of Q-learning is
the fact that the agent can execute more exploratory actions and even suboptimal
decisions, from which it can learn valuable lessons, which would stay undiscovered
in On-policy TD. Algorithm 5 provides a pseudo-algorithmic description of Q-learning.

Algorithm 1: Q-learning (off-policy TD control) [Sutton and Barto, 2018]

Initialize Q(s,a), for all s ∈ S+, a ∈ A(s), arbitrarily

for Each episode do
Initialize S
for Each step of the episode do

Choose A from S using policy derived from Q (e.g., ϵ-greedy)
Take action A, observe R,S’
Update: Q(S,A) ←− Q(S, A)+α [R + γmaxa Q(S’,a) - Q(S,A)]
S ←− S′

until S is terminal
end

end
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In words, the state-action values are arbitrarily chosen at first. Then for each step
in every episode, an action is chosen according to a policy like the ϵ-greedy policy.
For this action the transition is observed and based on the observed values, the
state-action value for state S and action A is updated based on the optimal policy
and the previous estimation of the state-action value.

2.3.3 Reinforcement learning for trading

The previous parts introduced reinforcement learning in a discrete setting where
set of states is a closed set of discrete states. In such a case the Q(S,A) values
can be tabled for all state-action pairs and updated for each occurrence in the
episode. However, when in a live trading setting, the set of states is no longer
a closed set of discrete states, but becomes continuous. This change requires a
solution where state-action values can no longer be tabled. Instead of the tabled
values, the continuous case requires a state-action function approximation based
on a set of parameters. Instead of updating the tabular values while learning, the
parameters of the function approximation are changed. The function approximation
of the action-value function is a classic function approximation machine learning
problem. Polynomials, Fourier based, and based on coarse coding or tile coding,
are some feature construction methods for linear models that can be used for the
action-value function approximation. Furthermore there exist memory-based or
kernel-based function approximations [Sutton and Barto, 2018]. However, a more
popular approach is function approximation with a nonlinear function and more
specifically with Artificial Neural Networks. When function approximation is done
with multilayered neural networks, it is generally called deep reinforcement learning.
Deep reinforcement learning has caught the attention of both academics and industry
for trading given its strong results [Zhang et al., 2019], [Karpe et al., 2020], and will
also be the focus of our research.

This research intends to contribute to the literature on applications of signatures
in finance, and more specifically contribute with pairs selection with signatures.
Furthermore, using deep reinforcement learning, the thesis adds to the abundant
literature on the application of deep reinforcement learning in trading, and more
specifically for optimal execution.
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Chapter 3

Data

In this chapter, the dataset is discussed that is used to create the asset universe and
the data transformations required to generate the final spreads that are used for pair
selection and trading. The code that is used to clean the data and transform the
data to spreads is provided in the Python class DataLayer under Appendix A.1.

3.1 Asset universe

When using a dataset there are different parameters to take under consideration.
The first consideration is the data availability. Preferably, for all assets in the dataset,
there is plenty of data present to benefit training and testing. Regarding data
availability, indices like S&P 500, Russel 3000, FTSE 100, DAX 50, groups of euro
ETFs or US ETFs, and others are good candidates given they are well established
indices with mostly large and known constituents. A second consideration is the
company size in terms of market capitalization. In general the companies with
a larger market cap provide a more stable stock price compared to their smaller
peers. For this reason we drop indices like the Russel 3000. A third consideration
is the potential to create a fundamental understanding of the output. Given a pair
of two known assets, it allows to generate an idea of the fundamentals that drive
the mean-reversion of these two assets. For ETFs, finding the fundamental drivers
of the mean-reversion is much harder as you need to understand the composition
of the different ETFs and how they interact with each other. For this reason we
drop the groups of Euro ETFs and US ETFs. A fourth and final consideration for
determining the dataset is the number of assets that are included. Ideally, there
are enough datasets to generate many potential pairs, however given the number
of pairs corresponds to (n ∗ (n − 1))/2, with n the number of different assets, the
computational effort can increase fast. This consideration excludes the S&P 500
given 500 assets would provide 124’750 different pairs. Considering all of the above,
the FTSE 100 is chosen as the dataset providing the universe of assets for our analysis.
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3.2 Data cleaning

The initial data set contains stock price data for 288 assets starting from January
1st 2000, until November 29th 2023. Several steps are taken to filter the data. The
goal of filtering the data is the filter for those assets for which there is a maximal
data availability. The first step is the removal of each asset for which there are NaN

values. These assets are mostly assets for which there is data missing over the given
period either because they weren’t listed yet or they defaulted at a point in time.
The second step is making sure that the assets that are still included show a realistic
price path. Some of the price paths that are being removed are penny stocks, which
show very unreliable paths, and assets that got delisted at some point showing a flat
price path. After applying filters for these assets, there are 193 assets left.

Given the research is mostly interested in the spread between asset prices, the next
step consists of normalizing the price data. The price data is normalized by dividing
the prices of every asset by its first available price value. This normalization elimi-
nates the influence of the absolute value of the prices when calculating the spread.
Once the normalized price values are calculated, the assets are ranked according to
the sum of their normalized price values with the highest value first and the smallest
value last. This allows to check and decide which price paths should be used in the
analysis. Eventually, 100 assets are kept with the largest sum in prices, given they
have a more realistic movement over the 20 years of data that are analysed. Figure
3.1 shows the normalized price path of 10 asset from the final asset price universe
used in this work. The figure shows some of the major events that happened in
the time interval being considering like the crash of 2008, COVID in 2020, and the
post-COVID rally in 2021. These events will also be included when training the
different models that are used and could present a challenge for the considered models.

Figure 3.1: Normalized stock prices for 10 assets of the asset universe over the
complete time interval.
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3.3 Spreads

With the universe selected and the normalized price data calculated, one can calculate
the spread values at every point in time as the absolute value of the difference between
the normalized price values of two assets. The absolute value is used as for trading
the spread it is less relevant which asset is the winner and which asset is the loser.
Furthermore, it helps calculations when determining the profit and loss of a pairs
trading strategy on a given spread, which is further explained in Chapter 4. Figure
3.2 shows the spread between Capricorn Energy and Pennon Group over the entire
time interval. Given the research mostly focuses on trading over a specific time
interval, it is more interesting to zoom in on the data for better understanding.
Figure 3.3 provides the spread between Capricorn Energy and Pennon Group over
the last 100 trading days on the left and the separate normalized asset prices of
the respective assets on the right. Analyzing the entire data horizon, the spread
is initially small. This is due to the normalization of asset prices and the general
market growth over time. Otherwise the spread shows to be volatile. Analyzing 100
trading days, there seems to be a mean-reverting behaviour between the two assets
providing potential trading opportunities when trading the spread.

Figure 3.2: Spread between Capricorn Energy and Pennon Group over the entire
data horizon.

Figure 3.3: Left: spread between Capricorn Energy and Pennon Group. Right:
Normalized stock prices for Capricorn Energy and Pennon Group.
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Chapter 4

Methodology

The following chapter provides a detailed description of the methods applied in order
to ascertain trading pairs and to determine an optimal trading strategy. The first
section covers the calculation of the profitability of pairs trading on a specific spread.
This method is used throughout the research as a proxy for the maximum profitability
of pairs trading on a spread over a certain time period. Once the profitability is
established, the method further describes how the profitability can be associated
with the signature of a spread. The second section of the chapter describes the
technique that is used to determine the profitability of pairs trading on a spread in
the future, relying on the expected signatures and the modeled profitability from the
first section. In the third section, the optimal execution algorithm is described. The
main parts of the execution consist of the trading environment, the reward function,
the design of the reinforcement learning agent, and how to train the agent. Lastly, a
benchmark method is described in order to benchmark the pairs selection method
with expected signatures against a classic pairs selection method and to benchmark
the optimal execution method with reinforcement learning against a classic execution
method.

4.1 Profit and Loss

The description of the data in Chapter 3 allows to build and explain a methodology
to determine the profitability of a pairs trading strategy. In Chapter 3, the spread
between normalized prices is calculated as the difference between two normalized
prices at every time point. These spreads are all the information the trader receives
when it needs to learn how to trade. Firstly, a method is described to calculate the
maximal profitability of pairs trading on a spread. Secondly, based on the given
spreads and the proxy for the profit and loss of the pairs trading strategy, a model is
established that connects the signature of a spreads to the potential profit of the
specific spread. This model is called the PnL signature model throughout the text.
The code for calculating the PnL and creating the PnL signature model can be found
in the Python class PairSelection under Appendix A.2.
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4.1.1 Profit and Loss calculation

When trading a spread the goal is to maximize the profit by taking a position on
the spread when the spread is at its maximum and relying on the mean-reverting
character of the pair forming the spread such that the spread declines and the position
can be exited at a minimum. Based on this logic, a proxy for the PnL is calculated by
finding the local maxima and local minima ([Panos Patrinos, 2023]) and taking the
sum of the differences of each maxima and the next minima. Algorithm 2 provides
a structural overview of how the PnL of a spread over a specified time interval is
calculated. The idea is that the trader takes position at the maximum and exits at the
next minimum before taking position again at the following maximum. This method
does not require the spread to fully revert to zero before exiting the position, which
can be the case for many of the spreads where there might be a constant minimum
distance during the whole training period. Furthermore, and most importantly, the
calculated PnL provides an indication of the tradability of a specific spread, with a
high PnL indicating a large volatility in the spread, and a low PnL indicating a low
volatility in the spread. Figure 4.1 shows the positions taken and positions excited
for a given spread following the PnL logic. Important to note is that in this approach
transaction costs are being neglected as the only purpose is to find a PnL value that
indicates tradability and profitability. When including transaction costs, some of the
smaller transactions might not be profitable. This will be for the trading agent to
learn. In the figure a spread over a period of 100 days in analysed, given this is the
general length of trading periods found in literature. However, the code is build in a
modular way such that one can adapt the trading window.

Algorithm 2: PnL calculation

Step 1: List local maxima and minima for a spread
for each max and min do

Add to list of extrema sorted by time index
end

Step 2: Calculate profits
profit = 0
for each max do

Calculate difference with the next minimum
Add difference to profit

end

return profit
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Figure 4.1: The local maxima and minima for the spread on Capricorn Energy vs.
Pennon Group over a time interval of 100 days. Opening position at the maxima
and closing the position at minima, neglecting transaction costs would result in a
maximum profit from trading this spread. This approach delivers a total PnL value

of 7.21 for this trading window.

4.1.2 Profit and Loss Signature

Given the characteristics of signatures, a signature can be understood as a noise
filter, where only the relevant features of the respective path are translated into
the signature elements. A higher truncation order of the signature will lead to a
lower information to noise ratio of the additional signature elements. From this
angle, the signature can be described as a filter and this filter can be used when
estimating the PnL of the expected signature, which is discussed in the next section.
In order to be able to calculate the expected PnL based on the expected signature, a
model is required that links the signature of the path to the PnL proxy of that path.
The proposed model in this research is a regression model that takes the signature
elements of the path as features and the PnL proxy of that path as output value.
The regression model is a Ridge regression model making use of a robust scaler for
the features before fitting the model. In Subsection 4.2.2, the paper elaborates on
the Ridge regression model and why a scaler is used as pre-treatment for the features.
The model provides a direct link between the description of the geometry of a path
through signatures and the potential trading PnL from trading the path. Algorithm
3 provides a structured description of how the model is established. With the goal
to determine a relation between the path of a spread and its potential profit, the
model is fitted over all pooled spreads and their PnL value and not for each spread
separately. The goal is to find the driving features of a path behind the profit or loss
on a spread.

In Algorithm 3, m represents the truncation order of the signature, Xm
window rep-

resents the m-order signature of the spread over a specified window, PnLwindow,
is the calculated PnL of the spread over a specified window, and α represents the
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Algorithm 3: PnL signature regression

Step 1: Create regression DataFrame
for Each trading window of every spread do

Add PnLwindow ; Xm
window to DataFrame

end

Step 2: Fit regression model
X = signature element values
y = PnL values
X-scaled = scaled signature values using a robust scaler
Fit model RidgeRegression(X-scaled, y, α)

return model

regularization factor for the Ridge regression.

4.2 Expected Signatures

Once the above described model for calculating the profit and loss on the signature
of a spread over a specified window is fitted, the potential profit of spread over a
future period is determined by calculating the expected signature of the spread and
by using the previously fitted model to predict the expected PnL. First, in this
section, the expected signature is defined in the setting of this research. Second, the
model and algorithm to calculate the expected signature is explained. Last, with the
expected signature an estimation of the future PnL of a spread is determined.

4.2.1 Definition

There exists light variations when define the expected signature of a time series
[Gregnanin et al., 2023], [Lyons, 2014], but a broad definition is given by Equation
4.1, with parameters p, q, n, m, where p and q represent the time steps being predicted
and the historic time steps used for the prediction respectively, while n and m repre-
sent the signature order of the expected signature and the signature of the historic
time series respectively. The function f then defines a relation between the signature
of the historic spread and the expected signature of the future time steps of the spread.

Xn
t+1,t+p = f(Xm

t,t−q) (4.1)

For this specific research, the expected signature becomes a two-step process. First,
Equation 4.2 defines the expected signature as the signature of the predicted spreads,
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where S defines the signature function, n indicates the truncation order of the
signature, and st+i indicates the value of the spread at time t + i.

Xn
t+1,t+p = Sn(st+1, st+2, .., st+p) (4.2)

Second, we define a separate relation between the prediction of every spread value and
the signature of the historic time steps by Equation 4.3, where the next spread value
is a function of the signature of the historic spread values. Function g is defined in the
following section. The choice for modeling signatures to spread values to signatures
instead of modeling signature to signature values was made to keep the model simple.
This approach is in line with [Lilian Weng, 2018] and [Fermanian, 2020]. The goal
of the research is to leverage the characteristics and advantages of signatures to a
maximum extent, without making use of complicated models and constructions to
aid the outcome of the prediction.

st+1 = g(Xm
t−q,t) (4.3)

4.2.2 Choice of model

Based on Equation 4.2 and Equation 4.3 an algorithm is build to determine the
signature of the future spread over a specific trading window. However, the functional
g needs to be defined in order to be able to predict the future spread values based
on the signature of the historic spreads. As stated earlier, the aim of this research is
to articulate the use of signatures for the prediction of financial time series values
that can be used in a trading algorithm. To focus on the signature and its strength,
the goal is to stay away from complicated models. This moves complicated machine
learning models out of scope and draws the attention to regression models. Given the
signature of a time series is a vector of numbers, each vector component can be seen as
a feature that is part of describing the path. This way each signature can be seen as a
set of feature labels which a model g can use in order to predict the next spread value.

In this feature framework, the family of linear regression models offers different
possibilities. The standard linear regression model is in that case one of the first
options to consider, however, given the nature of the data, this choice of model is
not optimal. Firstly, the linear regression model has difficulties handling collinearity
between different features. Given that different features belong to the same order
of signature, there is a reasonable chance of collinearity between the these features.
Secondly, for each order of the signature, there is a constant included due to the
time augmentation of the spread data. The concept of time augmentation is dis-
cussed further in the text, but this causes some of the values to be constant. The
linear regression does not handle these constants well. Thirdly, in the case of an
abundance of features, standard linear regression tends to overfit [James et al., 2012].
In order to avoid these problems, g is chosen to be a Ridge regression model. A
Ridge regression is known to handle collinearity better compared to linear regression.
Furthermore, Ridge regression is a regularization model, which applies shrinkage of
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coefficients, which is a penalty applied to the coefficients that can shrink the value
of the coefficient close to zero, reducing the relevance of the linked feature. Next to
indicating relevance, this form of regularization helps also with handling overfitting
in an environment with many features.

A Ridge regression model requires as input the feature values and the output value
that is specifically linked with these feature values. In case of the expected signature
model, the feature values are the signature values of the m order signature of the
previous q spread values, and the connected output value is the spread value at the
next time step that is not included in the time series for which the signature was
calculated. The optimization equation of the model is given by Equation 4.4.

minimize ||y − βX||2 + α||β||2 (4.4)

where y is the output value, corresponding to the spread at time t + 1, X are feature
values, corresponding to the signature values of the signature of the previous q spread
values, β are the coefficients, and α is the regularization parameter determining
the strength of the applied penalty. Values for α can vary between 1e− 4 and 1e6.
A larger value for the regularization parameter will penalize the coefficients more,
meaning that less coefficients will play a substantial role in the prediction of the next
spread value. The closed solution of the Ridge minimization is given by Equation
4.5. The equation indicates why Ridge regression is more capable of coping with
collinearity compared the the standard linear regression. Due to collinearity between
features XT X can become close to singular which can lead to numerical instabilities
when calculating the inverse of this matrix product. The regularization constant
stabilises this process, making sure the inverse can always be calculated. However,
when the regularization constant becomes very large, the predictive quality of the
model will go down and the prediction will become more general.

βmin = (XT X + αI)−1XT y (4.5)

4.2.3 Algorithm

Based Ridge regression model described above, an algorithm can be build in order
to determine the expected signature for each spread that is available in the data,
separately. A description of the algorithm is provided by Algorithm 4.
The first step of the algorithm creates the labels which are used to train the regression
model for each single spread. The features are the signature values of the signature
of the considered window. The window contains q spreads and is moved forwards
through the data with k steps, with k chosen between 1 and q. With k = 1 there is
more data available for the regression, but the data set has a low information entropy,
meaning the amount of new information available for the model to learn from an
additional data point is minimal. However, with k = q, and q large, the amount of
available labels to train is limited, which will also hurt the model performance. This
is why k is chosen between 1 and q. Once the dataframe of labels is build, all data is

26



4.2. Expected Signatures

Algorithm 4: Expected Signature Algorithm for a Single Spread

Step 1: Create the regression DataFrame
for each window of size q and next spread value do

Add st+1 ; Xm
t−q,t to the DataFrame

end

Step 2: Define the Ridge regression over the regression DataFrame
X = signature values
y = next spread values
X-scaled = scaled signature values by robust scaler
Fit model: RidgeRegression(X-scaled, y, α)

Step 3: Calculate the expected signature of the next p spreads
for step i from 1 to p: do

Calculate signature for [st+i−q : st+i−1]
Rescale the new signature with the robust scaler
Predict st+i using the Ridge model
Collect the predicted spreads

end
Calculate the expected signature Xm

t+1,t+p return expected signature

Xm
t+1,t+p

available to train the Ridge regression model. However, before training the model,
the feature values are scaled with a robust scaler. The scaler removes the median of
the features and scales them according to the quantile range (defaults to interquartile
range between 1st quartile and the 3rd quartile) [sckit-learn, ]. It is very common to
preprocess features, however outliers can have a substantial influence on the sample
mean and variance. The two main advantages of the scaler are the fact that it helps
the model to deal with outliers, and that is does not assume a specific distribution
in the data.

Once the model is fitted, p future spreads can be predicted based on the signature
of the latest q spread values. Given that it is the goal to determine the most
optimal pair for pairs trading in the next trading window, the predicted i-th spread
is used for forecasting the i+1-th spread. It is relevant to note that during the
calculation of the signature of the time series of spreads a time augmentation is
required for calculating the signature. The time augmentation changes the array
of spreads to a two dimensional path. This step is integrated in a custom function
for calculating the signatures and is required to calculate the signature of a 2D
path. There exist different approaches for time augmentation, however, we went
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with the simple approach of assigning an index to each value, which creates a linear
interpolation between the spread values to generate a path for which the signature
can be determined [Levin et al., 2013].

4.2.4 Expected PnL

From Algorithm 3 and Algorithm 4 it can be deducted that the signature order of
the expected signature m is the same as the signature order of the PnL signature.
This is by design, such that the model describing the relation between the potential
PnL and the signature of a spread can be used in order to determine the expected
PnL from the expected signature. A different option would have been to calculate
the expected PnL straight from the predicted spread values for an entire trading
period. However, as stated above, the goal of working with signatures it to get rid of
the noise and keep the relevant information for pairs trading profitability and such
improve the model predictions. By using signatures, one tries to filter out the noise
of the prediction of the future spreads.

Once the expected PnL for every spread is calculated, the spreads are ranked from
highest to lowest expected PnL. The highest ranking spreads will be the spreads that
are of interest for the pairs trading strategy, given the highest returns are expected
for these spreads in the next trading period. The research considers the 20 pairs with
the highest expected return for the expected signature model and compares these
to the actual best performing pairs and the classical benchmark for pair selection,
which is discussed later.

4.3 Optimal execution with Reinforcement Learning

The following section elaborates on how reinforcement learning, and more specifically
deep Q-learning, can be used for optimal execution of trades on a given spread. While
Chapter 2 provided a background on reinforcement learning, the different elements,
and the different available techniques, the focus here is on applying the theory in
the given setting of our research and designing a trading environment and deep
Q-learning agent. The first part of the section focuses on the trading environment,
where the possible actions of the agent and the rewards for the agent are defined
based on a provided spread. The second part of the section focuses on designing
the trading agent. The trading agent’s architecture is based on the theory behind
deep q-learning and the architecture, parameters, and underlying steps are discussed.
The code for the trading environment can be found in the class TradingEnv under
Appendix A.3.1, while the code for the trading agent can be found in the class
DQLAgent under Appendix A.3.2. The trading environment was modelled using
the gyms package, a well-known package to design environments for reinforcement
learning for different types of applications.
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4.3.1 Trading environment

The trading environment sets the stage for the agent. Firstly, it decides what
information about the environment the agent receives. Secondly, the environment
decides which actions are available to the agent. Lastly, and perhaps most importantly,
the environment defines the reward an agent receives after every action, which steers
the behaviour of the agent.

State

The data available to the environment is technically all the historic spread data up to
the present. This means all data from the latest spread to the earliest spread could
be provided to the agent should this be required. Only providing the latest spread
to the agent might not provide the agent with enough information to make a trading
decision while providing a full history to the agent every time might be too much
data such that the agent has difficulties processing all the data. The parameter that
decides on the amount of information the agent receives is called the lag value in the
RL setting of our research. The minimal lag value is 1, while the maximal lag value
depends on the amount of data available. A reasonable choice for a lag value is 20,
meaning that the state consists out of the 21 latest available spreads, although the
code is build so the lag value can be changed for testing purposes. Additionally to
the lagged spread values, another important element that needs to be added to the
state is the current position of the agent. Just as depicted in Figure 2.1, there are
two potential positions for the agent, either the agent has an open position and is
holding the spread or the agent does not have a position. A value 1 for the position
means the agent is currently holding a position, while a value 0 indicates that the
agent is currently not holding a position. Together with the lagged spreads and the
current spread, the position of the agent defines the state.

Action space

Through actions the agent is capable of changing the state, and for this change the
agent receives a particular reward or punishment. It is clear the the agent is unable
to influence the lagged spreads, however the agent can decide at every step about its
position. There are three possible actions for the trading agent. Firstly, the agent
can take a position, either the agent did not have a position and it enters one, or the
agent already had a position, in which case nothing happens. Secondly, the agent can
sell its position. In the case that the agent is holding a position, the trader exits the
position, while in the case the the agent is not holding a position, nothing happens.
Lastly, the agent can decide to hold, which changes nothing to the state. For further
clarity, numbers are assigned to the different actions. The available values are zero,
one, and two, which correspond to buying, holding, and selling respectively.

29



4. Methodology

Reward function

The reward function is a tool to provide signals to the agent if the effect of its latest
action was desired or not to reach the eventual goal which is maximizing the profit
when trading the spread. Figure 4.1, which resembles how the PnL is estimated, also
provides a proxy for the optimal strategy of the agent. In order to maximize profit,
the agent should buy high and sell low. Given this strategy in mind, Algorithm 5
provides a pseudo-algorithmic description of the calculation of the reward. The agent
is rewarded for holding a position if the previous spread is higher than the current
spread, while the agent is penalized for holding a position if the previous spread is
lower than the current spread. Furthermore, the agent is rewarded(penalized) extra,
when it exits its position with a profit(loss). This reward function makes the agent
conscious about holding a position for a long period and about avoiding a loss at exit.
Additionally to the standard reward function, if an action of the agent is executed,
an additional transaction penalty can be added. The transaction penalty can be
chosen freely, but a realistic value would be 0.2% of the value of the spread that is
being traded. The reward function that includes the transaction penalty is given by
function calculate reward transaction cost() from class TradingEnv. This
reward function is not only used to train the agent of interest, but also to rate
the other trading methods, given its considerations on the ideal treatment of the
positions.

Algorithm 5: Trading environment reward function

reward = 0
if agent holds position:

reward = previous spread - current spread
if agent does not hold position and takes position:

agent holds position
elif agent exits position it is holding:

reward += previous spread - current spread
agent doesn’t hold position

return reward

Trading

With the state space, action space, and reward function defined, it is possible to
trade in the trading environment over a pre-determined trading period. Figure 4.2
provides an illustration of a random agent trading a spread for 100 trading days and
the total reward gathered by the random agent. From the figure it is clear that a
random agent will only make a profit when it is lucky with the actions taken. There
is no systematic way for the random agent to make a profit.
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Figure 4.2: The figure shows the trading decisions made by a random agent trading
a spread and the accumulated return resulting from the actions. The random agent

got lucky when buying two times when the spread converged.

4.3.2 Deep Q-Learning agent

Given the trading environment, the goal of the research is to design a reinforcement
learning agent that learns to optimally trade a spread of two assets, where optimally
trading is defined by the reward function. Chapter 2 explained the goal of a
reinforcement learner is to learn the optimal policy π(a|s)∗ where the agent knows
which action a to take for a given state s to maximize the total reward. This policy
can be learned through policy control where the policy is updated according to the
state-action values q(a, s). The Chapter further explains that there exist different
methods in order to determine and continuously update these state-action values
and that the Off-policy Temporal Difference method, also called Q-learning, is an
ideal method to learn an agent on a live process. This method is of interest to
our research, however, the chapter also explains that, due to the characteristics of
financial time series, the state space is not discrete and not finite, and for such a case
a function approximation is required to learn the state-action values for Q-learning.
As a model for the function approximation, our research proposes a deep neural
network. The specific characteristics of the neural network model can be found in the
model building function build model(), where neural network consists of one input
layer, one hidden layer and one output layer. With each additional layer, the number
of parameters increases substantially. The combination of the Off-Policy Temporal
Difference method and neural networks for function approximation is called Deep
Q-Learning (DQL) and is a popular technique when it comes to determining optimal
execution in trading. Algorithm 6 provides a pseudo-algorithmic description how
such an agent can learn. Some essential building stones required to complete the
agent are highlighted in what follows.
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ϵ-greedy policy

A first important building stone is the policy applied by the agent in order to be
able to learn. Such a policy should enable the agent to exploit what it has already
learned to maximize the profit, while the agent needs the freedom to explore other
options to see if there are perhaps more preferred strategies by choosing different
actions in different situations. Such a behaviour is typically imposed by an ϵ-greedy
policy. For a given ϵ between zero and one, if a randomly drawn number between
zero and one is smaller or equal to epsilon, a random action is selected. Otherwise,
if the randomly drawn number is larger than ϵ, the neural network is used to predict
the q-values for every available action given the current state and the action with
the highest q-value is chosen. The ϵ-greedy policy is given by Equation 4.6.

a =
{

argmax
a

Q(s, a), u > ϵ

random action, u ≤ ϵ
(4.6)

With Q(s, a) the state-action value for state s and chosen action a, u the randomly
drawn number between zero and one, and with ϵ as a parameter. However, over
time the desire to have an agent that exploits more or explores more changes. When
the agent starts learning, the agent should explore more to get a sense of the effect
different actions have, while near the end of the learning period the agent should
exploit more given it has build up more certainty over time. Because of this reason,
the value for ϵ is altered during training from a higher value at the start to a lower
value near the end of the training. The code provides the flexibility to alter this ϵ
decay to optimally fit the training purpose.

Online and offline network

A second building stone of high importance is the availability of a ground truth in
order to train the parameters of the neural network, given a neral network is usually
provided input-output labels to optimize its weight through gradient descent. Since
the parameters of the neural network keep on being updated, the target values for
training the parameters will also continuously change. This makes the process of
learning the neural network unstable. In order to solve this, a second neural network,
identical to the first network, is created. This network is typically named the target
network or the offline network, and is used to produce the target q-values, while the
original network is usually called the policy network or the online network. When
training, the parameters in the online network are updated first for a pre-defined τ
number of steps. After these steps, the parameters of the network are copied to the
target network, and the process is repeated until all training episodes are done. This
trick of using an online and offline neural network stabilizes the learning process.

Experience replay

A final element that is added to the Deep Q-Learning agent in order to improve
the accuracy and the convergence speed of Deep Q-Learning is experience replay
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(ER). Experience replay stores historic transitions as (st, at, rt+1, st+1) with st the
state before, at the action, rt+1 the reward, and st+1 the state after. These historic
transitions are sampled in mini-batches to update the network weights before a new
ϵ-greedy action is selected. This improves sample efficiency, reduces autocorrelation of
samples, and improves the stability of the neural network [Jansen, 2022]. Algorithm
6 provides a systematic description of the how the agent learns with experience
replay.

Algorithm 6: Deep Q-learning with Experience Replay

for Each episode do
for Each step of the episode do

if u ≤ ϵ:
select random action

else:
select optimal action based on the state and the online network

Execute action and get next state and reward
Memorize state transition
Begin Experience replay:

Sample batch from memorized transitions
Calculate target Q-values using the target network
Predict Q-values from the online network
Adjust predicted Q-values with the target Q-values
Train the online network with the adjusted Q-values
Decrease epsilon to adjust the exploit-explore balance
Each τ moves update the target network

end

Update current state to next state
Add reward to total reward

end

return total reward

4.3.3 Training data

One major disadvantage of reinforcement learning, is the amount of data that is
required to learn. Although the RL setup has been simplified as much as possible
trading only one spread, with a limited amount of actions available and a limited
amount of information available to process and with efforts made to increase sample
efficiency with experience replay, to make sure there is enough data for the agent to
learn, an additional technique is used to simulate spread data. A block bootstrap
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function splits the available spread data in blocks of 20 consecutive trading days
and creates 100 day trading periods from these different blocks at random. This
technique allows to fairly simply generate different trading scenarios for the agent to
learn from [Balesse and Lemahieu, 2024].

4.4 Benchmarking a Pairs Trading strategy

Previous two sections discuss an approach to solve the two main problems that
occur in pairs trading. The first problem is how to find pairs that are optimal for
a pairs trading strategy, and the second problem is once a pair has been identified
how one can optimally trade the spread between these pairs. Chapter 2 mentions
the cointegration strategy as a strategy for selection of optimal pairs. This is a
straightforward strategy that is relatively easy to implement and has been used to
benchmark other strategies [Krauss, 2017], hence we will implement a cointegration
strategy as benchmark for optimal pair selection. Furthermore, Chapter 2 mentions
the trading strategy applied in [Gatev et al., 2006], where the trader takes a position
once the spread becomes larger than two times the standard deviation and exits the
position when the spread converges to zero. This approach will be used to benchmark
the trade execution.

4.4.1 Pair selection with cointegration

The cointegration strategy to benchmark the optimal pair selection for pairs trading
is based on [Rad et al., ], which provides an off the shelf approach that is easily
implemented in Python. The first step of the approach consists of calculating the
sum of Euclidean Squared Distances (SSD) between the normalized prices for every
spread, and a pre-selection is made based on this SSD value, where one only keeps a
certain amount of spreads that are below a specific SSD threshold value. If the SSD
becomes too large, there is already too much divergence between the asset prices
in order to have a tradable spread. The second step of the approach relies on the
principle of cointegration. Cointegration assumes that, although two time series
can both be nonstationary, a linear combination of those two time series can be
stationary, hence mean-reverting. Given this principle, the spread between two price
process can be defined by Equation 4.7.

Spreadt = Pi, t− βPj , t− δ (4.7)

Where Pi, t, Pj , t are the asset prices for asset i and j respectively at time t, β is
defined as the regression coefficient after fitting a regression between Pi and Pj , and
α is the intercept of the regression. In order to determine if this linear combination
of asset-prices is mean-reverting, a stationarity test is required. There exist different
stationarity tests, but the test used in our research is the Augmented Dickey Fuller
(ADF) test. The ADF test is a unit root test, where the unit root is a feature of
time series that indicates if there is any stochastic trend in the time series that
drives it away from its mean value. The presence of the unit root feature in a time
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Figure 4.3: A representation of the borders used to open and close positions
according to [Gatev et al., 2006]. The figure shows that there is only one complete
trading opportunity in the 100 day trading period. The spread goes above the 2x

standard deviation once to then convert to zero again.

series causes the nonstationarity [Ritu Santra, ]. For each pair, the test is used
in order to determine if the spread for the specific pair is mean-reverting or not.
The test provides a t-statistic and a p-value, which provides an indicating of the
mean-reverting character of the spread at hand. The original SSD ranking is kept,
but the pairs with a less negative t-stat and/or a higher p-value are removed from the
ranking, providing a top 20 ranking just as is the goal with the expected signatures
approach.

4.4.2 Trade execution

Also, the original trade execution strategy from [Gatev et al., 2006] is straightforward
and easy to implement in Python. The first step is to determine the standard deviation
of the spread over the available history, which our research takes as the last year. The
second step is for the agent to take position once the spread is larger than 2 times
its standard deviation, and the last step is for the agent to exit the position once
the spread fully converts back to zero. Figure 4.3 provides a visual representation of
this trade execution approach on the Capricorn Energy vs Pennon Group spread.
According to this strategy, the trader will take position half way the trading window
and will exit the position again shortly after. The trader takes a position a second
time, and this position is excited as the end of the trading period is reached at a loss.
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Chapter 5

Results

The following chapter reports and discusses the results of pairs trading with expected
signatures and reinforcement learning in line with the methodologies presented in
Chapter 4 and using the data discussed in Chapter 3. First, the profit and loss
regression is discussed. An analysis is made on how well signatures can indicate the
potential PnL of a spread and which signatures are most important in this relation.
Second, the section considers the Expected Signature regression model, where the
Expected Signature of a spread is determined by predicting future spread values.
Third, using the Expected Signature results and the PnL signature relation, expected
PnLs for all eligible spreads are calculated and compared to the test results and the
benchmark output of the cointegration method. Fourth, the optimal trade execution
with the constructed reinforcement learner is applied and compared to the benchmark
method and a random agent. In all sections the assumption of a trading period of
100 days was made which roughly translates to half a year and matches with the
typical length for trading periods in pairs trading literature.

5.1 PnL regression

In this section the regression model between signatures and pairs trading profit
and loss of a spread is analyzed. In Chapter 4 it is described how for a specific
trading period a Ridge regression model is fitted on the signatures of the spreads
and the linked PnLs over the respective trading period. In the following, the model
is analyzed for different signature truncation orders in order to research the effect of
the signature order and to try and understand the relation between the signature of a
spread and its pairs trading performance. In the first part the model performance is
discussed, and the second part zooms in on the importance of the different signatures.

5.1.1 Model performance

The performance of the model is evaluated for different signature orders. The orders
evaluated are 3, 6, and 10. It is possible to test the model for higher orders, but
given the exponential increase of variables with an increase in signature order, the
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required computational efforts would increase substantially. For the evaluation of
performance, the available set of labels is divided in a train and test set. With a given
train and test split, the performance is evaluated by providing a visualisation of the
predicted test values vs. the actual test values. If the model is performing one should
expect a concentrated cloud around the diagonal dashed line. If the cloud is more
dispersed away from the dashed line, the model is not performing well. In addition to
the visual representation of the model performance, the median average error and the
R2 score are provided to as quantitative measure to compare the different regressions
[skit-learn, ]. Furthermore, in order for the model to use the optimal alpha, the
code uses RidgeCV, a function provided by sklearn that uses cross-validation in
order to select an optimal regression factor α from a provided set of α’s. The avail-
able set of values for the regularization factor is [1e(−2), 1e(−1), 1e, 1e1, 1e2, 1e3, 1e4].

Figure 5.1 shows the performance for the signature PnL regression with a signature
order of 3,6, and 10. From both the visual representation, and the median average
error and R2 values it can be understood that the model improves for a higher order
of signatures. This is not unexpected given that the additional features can provide
additional information to improve the regression, while there is enough data provided
to handle the high amount of features. The median average error should be as small
as possible, while the R2 value should be as close as possible to 1. With decreasing
order the MAE increases, while the R2 value decreases. Where for a signature order
of 10 there is only a light dispersion of the actual vs. predicted values, the dispersion
becomes substantially larger for signature order 3. While higher order signatures
clearly outperform for the PnL regression model, the required computing effort can
be a restriction when execution time matters.

5.1.2 Coefficient analysis

The previous analysis indicates that the regression model with a higher signature
order provides better results compared to the regression model for lower signature
orders. Given the improved model performance, it is expected that higher-order
signature values are more important for the regression compared to the lower-order
signature values. In order to asses the impact of single features, the coefficients of
the model are analysed. In line with [skit-learn, ], the size of the coefficients indicate
the importance of the feature when the variance of the feature is also taken into
account, or when the regression data has been pre-processed by a scaler. For our
research specifically, the data has been pre-processed by a scaler, which normalizes
the features and allows the comparison of the size of the coefficients in order to assess
the importance of the different features. Figure 5.2 provides a list of the features
with the largest coefficient and a list of the features with the lowest coefficient. The
figure confirms the expectation that higher-order signatures carry more important
features compared to the lower order signatures, with the higher coefficients mostly
related to higher-order signatures and the smaller coefficients more, but not only
related to the lower-order signatures. Due to the higher order, one cannot provide
a geometrical interpretation of the features of higher importance. These features
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Figure 5.1: The figure shows the signature PnL regression analysis for signature
order 10 (upper left), 6 (upper right), and 3(lower middle). The figure plots the
actual values of the test set versus the predicted values of the test set and provides
the median average error and the R2 value o the test set for each regression. Both
the visual representation and the quantitative measures show that the quality of the

model declines for a declining signature order.

carry high dimensional information about the spread time series that is relevant for
its tradability for a pairs trading strategy. From a pairs trading perspective this
is unexpected given one would expect the drift, which translates to the first order
signature, and the volatility, which translates to the second order signature of the
spread to be the main contributors to the potential profit for trading that specific
spread.
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Figure 5.2: The figure provides an overview of the largest coefficient values (in
absolute value) on the right and the smallest coefficient values (in absolute value)
on the left. The most impactfull signatures fall under the highest signature order
included in the analysis. For the least impactfull signatures, there is no clear tendense

5.2 Expected Signature regression

In the following section, the Ridge regression model to predict the next spread value
based on the signature of historic spreads is discussed. An important difference with
the previous section is that while for the modelling of the signatures to the PnL
all data from all spreads was pooled to generalize the spread to PnL relation, the
modelling of the signatures to the next spread value has to happen for each spread
separately. The first reason to consider each spread separately, is that each spread
has its own characteristics with the unique character of the interactions between
the two assets that make the spread. These interactions and, as a consequence, the
spread produced by these interactions, cannot be generalised. The second reason
to not pool all the available data for different spreads, is that after testing this
approach, the pooled model generalises too much under a high regularization con-
stant, producing outcomes that are not usable for this thesis. In the first part of
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this section the research considers the model performance and the influence of the
different parameters like the window q, the step k, and the signature order n. In the
second part of this section the important coefficients for the spread prediction are
discussed.

5.2.1 Model performance

The data for this section considers the signature of a time series window of the
spread and the subsequent spread value. Collecting the labels happens by stepping
through the data with a specific step that is not necessarily equal to the window.
The first label can be the signature of the spread from t = 1 until t = 200, where
the window is 200, and the value of the spread at t = 200 + 1, while the next label
will be signature of the spread from t = 1 + step until t = 200 + step and the value
of the spread at t = 200 + step + 1. The choice of window and step substantially
influences the amount of available labels, in addition to not pooling the regression
data which decreases the available data points. Together with the signature order,
the window and the step are the main parameters influencing the model performance.
For different signature orders we analyse the influence of the window and the step
on the average model performance. As measure for the model performance the R2

value is used to determine the average out-of-sample performance. Tables 5.1, 5.2,
5.3 provide the average performance of the model for a max signature order of 2,
3, and 4 respectively. It is possible to use a higher signature order, but then the
computational effort becomes a bottleneck and for many window/step combinations
the regression would fail.

Table 5.1: Table provides the average R2 value for all spreads running the expected
signature regression model with a signature truncation at order 2. The positive
scores are highlighted in blue. For signature of order 2, positive values are registered
for a smaller step of 10 - 20 time points. The optimal value is found for a window of

400 spreads and a step of 10 time points.

window \step 10 20 50 100 150 200
10 1.91E-02 5.00E-02 -2.72E-01 -2.34E-01 -5.92E+01 -5.33E+01
20 6.24E-02 9.27E-02 -2.46E-01 -1.46E-01 -2.49E+01 -4.34E+01
50 1.23E-01 1.06E-01 -1.06E-01 -1.73E-01 -7.82E+02 -6.06E+01
100 1.78E-01 1.75E-01 1.66E-01 -1.80E+00 -3.23E+01 -9.56E+01
200 2.83E-01 2.68E-01 1.57E-01 -1.51E-01 -4.51E-01 -4.49E+01
400 3.72E-01 3.56E-01 -2.74E-01 1.32E-01 -2.11E+00 -1.75E+02

The results show that for many configurations, the average is well below zero. This is
aided by the fact that the maximum R2 value is 1, while there is no minimum value.
A negative value for R2 renders the regression pointless and can be substantially
negative. This means that if the average R2 value is positive, most of the values
should be positive and there is a stable solution. The best scoring configuration
can be found for the signature with truncation order 3, with a window of 200 and
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Table 5.2: Table provides the average R2 value for all spreads running the expected
signature regression model with a signature truncation at order 3. The positive

scores are highlighted in blue

window \step 10 20 50 100 150 200
10 -4.20E+01 -2.79E+07 -8.92E-01 -3.31E-01 -2.20E+00 -3.62E+08
20 -8.79E-01 1.50E-02 -4.10E+00 -1.33E+01 -2.35E+00 -3.20E+01
50 -4.07E+00 1.99E-01 -1.55E+00 -8.76E-01 -1.69E+02 -1.69E+09

100 -9.08E+00 -1.08E+01 -7.92E-02 -6.32E-01 -4.35E+00 -3.06E+08
200 -3.05E+02 3.86E-01 1.75E-01 1.46E-01 -2.69E+00 -7.22E+11
400 -7.73E+03 -3.99E+03 -5.12E+01 3.09E-01 -6.25E+00 -3.15E+06

Table 5.3: Table provides the average R2 value for all spreads running the expected
signature regression model with a signature truncation at order 4. No positive
averages were registered, showing that the additional features decrease the overall

model performance.

window \step 10 20 50 100 150 200
10 -3.62E+00 -6.24E+03 -1.52E+02 -6.92E+04 -2.67E+00 -2.03E+02
20 -2.62E+00 -3.01E+00 -2.66E+02 -3.85E+02 -2.22E+04 -7.20E+02
50 -3.06E+02 -8.57E+03 -2.59E+03 -1.47E+01 -1.02E+05 -2.65E+02

100 -3.57E+02 -3.82E+04 -5.47E-01 -9.04E+02 -2.99E+03 -9.48E+00
200 -5.82E+01 -8.05E-02 -2.55E+00 -1.32E+05 -6.08E+01 -2.04E+01
400 -1.29E+03 -3.24E+03 -8.84E+05 -2.07E+01 -1.24E+06 -9.08E+01

a step of 20, scoring an average of 0.39. This is below the 0.5 mark, which would
be the result if the model would only predict the average of the test set, meaning
the generated models do not perform as one would like. However, in general many
of the individual performances need to be above 0.50 in order to compensate for
the larger negative values that are still present. It is decided to take the most
stable configuration with a window of 200 time steps, stepping through the historic
spread with a step length of 20 time steps, for a maximum signature order of 3. A
large window of 200 historic spreads is required in order to improve the prediction
of the next spread, while the step is kept small to provide sufficient data to the learner.

The cause of the low model performance can be multiple. Firstly, when stepping
through the historical data with a larger step, the amount of data is limited. If there
are 8000 time points available, stepping through with a step of 200 only provides 40
labels, while stepping through with a step of 20 still only provides 400 labels. Even
with a smaller step the amount of data is still very limited when comparing to the
number of features. This is also one of the reasons why it is not possible to increase
the signature order. Secondly, the opposite might also be through when stepping
through the data with a small step, like 1, for a large window. Using a step of 1 time
point on a large window would cause a high correlation between the different labels.
Thirdly, a linear model might not be able to capture the relation between the next
spread value and the signature of the historic spreads despite the signatures capturing
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the non-linear characteristics of the spread. A potential solution to improve the
results is to make use of synthetic data that is able to catch the characteristics of the
spreads. E.g., [Balesse and Lemahieu, 2024] provides a framework for multivariate
time series simulation, where the simulator can take into account specific desired
characteristics.

5.2.2 Coefficient analysis

Just as for the PnL regression, this section considers the importance of the different
features by looking at the absolute value of the coefficients after standardization
of the features. Figure 5.3 provides an overview of the most important and least
important features. Given the outcome of the regression model differs for each spread,
a spread was used with a R2 score of 0.95. The goal is to present the analysis for
a spread for which the regression provides a strong solution and to indicate which
features played an important role in this. Although a high model score is not a
guarantee that the relation between the signature of the window of historic spread
values and the concurrent spread value, it does provide an indication which features
are most likely to provide a good prediction. Figure 5.3 shows that the signature
components from signature order 3 play the largest role in the prediction of future
spreads based on signatures, while the coefficients for the temporal constants is 0.
This indicates that with more data using a higher order signature might deliver an
improved performance of the model.

5.3 Expected PnL

After training the model for the signature PnL regression and for the prediction
of the next spread value, the two models can be combined in order to determine
the expected signature and estimate the expected PnL for each spread in line with
the methodology described in Chapter 4. Using the expected signature regression,
the future 100 spreads are predicted, and the signature of this predicted interval is
calculated. This signature is then used in order to predict the expected PnL for the
specific spread. Executing this process for each spread provides a set of expected
PnLs. Ranking these according to the PnL value provides a ranking of spreads
that go from most promising for pairs trading to least promising for pairs trading.
However, as already discussed in the previous section, not for all spreads there exists
a stable prediction of the future spread values, which can make the calculation of
the expected signature either impossible or unstable. Because of this reason, our
code filters out the spreads for which there is either no prediction or an unstable
prediction which reflects in an outrageous PnL value. For the 4950 analysed spreads,
2532 spreads deliver an acceptable solution. With an acceptable solution, it is meant
that the PnL exists and is in range of the historic PnL values. Historic PnL values
vary between 1 and 70. Providing some additional space results in an acceptable
range from 1 to 100. From this point onwards, only these 2532 spreads after filtering
will be considered.
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Figure 5.3: The figure shows the size of the coefficients of the respective features
in the expected signature regression. Features 1, 3, and 7 correspond to a temporal
constant, hence the coefficient is 0. Feature 2 corresponds to the drift. Features 4,5,
and 6 play a role in the volatilty of the spread. However, it is the features from
signature order 3 that play the more important role with the highest coefficients.

5.3.1 Pair ranking

At the start of the analysis, the last 100 days and their respective PnLs were removed
from all data, to not have the values incorporated in training of the different models.
For these 100 days, the mentioned approach is used to provide a ranking of expected
PnLs, and the results are compared to the actual ranking and the ranking provided
by the cointegration method to provide a benchmark. Table 5.4 provides the top-20
spreads based on expected PnL, the actual ranking in the test set, and the actual
PnL for the test period. The table indicates that, although the parameters of the
expected signature model and the PnL regression were optimised, the model is not
capable of capturing the ranking of the test set. First, from the expected top 20
spreads, only one appears in the actual top 20 spreads of the test set. Secondly,
the predicted PnL values are not comparable to the PnL values in the test set, and
lastly, the internal ranking of the expected signature model does not respect the
internal ranking of the spreads in the test set. Given the results of the previous
sections, it can be assumed that the main causes can be found in the prediction of
the future spread values. First, with a lack of data and hence a reduced amount of
features, the prediction of the spread values becomes unstable. Second, predicting
100 consecutive values without adjusting for the correct previous value can cause the
model to run away from the general spread values. Lastly, the low signature order
might not be able to capture the driving forces for predicting the next spread value.
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Table 5.4: The table shows the predicted best 20 pairs for pairs trading according
to the expected signature model and compares the output with the actual ranking
of the assets in the test set and with the actual PnL value from the test set. The
expected signature model does not predict any actual top 20 spreads, except the
spread that is highlighted in blue. Furthermore, the predicted values are much larger

compared to the actual PnL values.
Predicted Rank Spread Predicted PnL Value Actual Rank Actual PnL Value

1 IMI - TATE & LYLE 98.05 673 6.92
2 HALMA - PERSIMMON 97.59 62 17.31
3 RIO TINTO - VANQUIS BANKING GROUP 97.42 284 9.04
4 ST.JAMES’S PLACE ORD - HOME RETAIL GROUP DEAD ... 97.19 767 5.98
5 SABMILLER DEAD - 06/10/16 - HAMMERSON 96.88 1897 2.08
6 BARRATT DEVELOPMENTS - HAMMERSON 95.78 1443 3.54
7 RIO TINTO - LAND SECURITIES GROUP 94.97 328 8.77
8 RIO TINTO - GKN DEAD - 21/05/18 93.28 281 9.06
9 SMITH & NEPHEW - TESCO 91.95 1432 3.55

10 ANTOFAGASTA - IMI 90.66 14 33.90
11 SMITH & NEPHEW - HSBC HOLDINGS 90.39 1424 3.57
12 IMPERIAL BRANDS - FIRST GROUP 90.20 544 7.37
13 FERGUSON - OLD MUTUAL LIMITED 90.06 1016 4.88
14 FERGUSON - CAPITA 90.05 949 5.12
15 HISCOX DI - CAPITA 90.03 557 7.28
16 BUNZL - POWERGEN DEAD - DEAD 01/07/02 88.49 887 5.31
17 ST.JAMES’S PLACE ORD - LEGAL & GENERAL 88.29 1192 4.20
18 RIO TINTO - TOMKINS DEAD - 28/09/10 87.82 279 9.06
19 DIAGEO - UBM DEAD - 18/06/18 87.42 803 5.75
20 HISCOX DI - CENTRICA 85.03 624 7.08

Table 5.5: The table shows the predicted best 20 pairs for pairs trading according
to the expected signature model with a less strict filter for the PnL values (150 vs
100 max) and compares the output with the actual ranking of the assets in the test
set and with the actual PnL value from the test set. The expected signature model
does predict 3 actual top 20 spreads. However, the predicted PnLs are further away

from the expected values.
Predicted Rank Spread Predicted PnL Value Actual Rank Actual PnL Value

1 ADVANCED MED.SLTN.GP. - HOME RETAIL GROUP DEAD... 149.98 468 7.82
2 RENISHAW - VANQUIS BANKING GROUP 149.20 611 7.17
3 PENNON GROUP - BALFOUR BEATTY 144.09 374 8.58
4 BERKELEY GROUP HOLDINGS (THE) - RIO TINTO 143.67 213 11.13
5 ANTOFAGASTA - ASTRAZENECA 141.17 3 35.69
6 NEXT - SSE 134.86 186 12.25
7 SCHRODERS - CAPITA 134.65 1543 3.21
8 WHITBREAD - MARKS & SPENCER GROUP 133.08 1112 4.63
9 UNILEVER (UK) - FIRST GROUP 129.66 1750 2.75

10 ST.JAMES’S PLACE ORD - POWERGEN DEAD - DEAD 01... 129.52 786 5.97
11 IMPERIAL BRANDS - HAMMERSON 128.71 568 7.31
12 AMLIN DEAD - 02/01/16 - GALLAHER GROUP DEAD - ... 127.98 1898 2.20
13 IMI - TAYLOR WIMPEY 127.26 757 6.41
14 HOWDEN JOINERY GP. - SEVERN TRENT 127.08 104 13.69
15 RIO TINTO - ENTERPRISE OIL DEAD - DEAD 25/06/02 123.75 279 9.17
16 DIAGEO - GKN DEAD - 21/05/18 123.72 823 5.78
17 ANTOFAGASTA - SEVERN TRENT 120.79 7 35.00
18 IMI - CRH PUBLIC LIMITED (LON) 115.34 776 6.10
19 WHITBREAD - CENTRICA 113.50 1069 4.73
20 ANTOFAGASTA - SSE 112.82 5 35.22

When widening the range of acceptable PnL values to 1-150, the model is capable of
finding three original top 20 values as shown in Table 5.5.

Next to the performance of the expected signature model which is presented in
previous tables, Table 5.6 presents the top 20 spreads from the test set and finds
the rank of these specific spreads for the expected signature prediction and for the
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cointegration strategy. In addition to the rank of the cointegration strategy, the
table also reflects the t-statistic and the p-value that accompanies the cointegration
analysis done for every spread. Where the methodology of [Rad et al., ] describes
a pre-filtering based on the sum of Euclidean squared differences as explained in
Chapter 4, for the purpose of this result and to be able to show all ranks, there is no
pre-filtering based on SSD and it is only used for ranking. Several conclusions can be
made from the table. The first conclusion is that when it comes to ranking according
to potential PnL the expected signature model outperforms the classic cointegration
model given the cointegration model ranks these top 20 spreads very low in its overall
ranking. This brings us to the second conclusion: the top 20 is very biased towards
spreads that contain specific assets like Antofagasta and Ashtead Group. Due to how
the spreads are constructed based on normalizing prices for the complete data period,
companies that have grown substantially over time will still have a large normalized
price compared to companies that have stayed relatively stable over time. Figure 5.4
shows the normalized stock price of Antofagasta versus Reckitt Benckiser Group over
the test period. The normalized price of Reckitt Benckiser Group stays flat, while
the normalized price of Antofagasta varies substantially compared to common spread
values. This creates pairs with a varying spread that presents trading opportunities
due to a higher volatility and higher absolute spread values, but where only one of
the assets actually deviates in price. The flat price asset then becomes a hedge of
which the direction depends on the movement of the other stock, while the trading
predictions and decisions are based on the movements of the varying asset. Figure
5.4 shows why these assets rank very low according to the cointegration method. Due
to the substantial distance between the normalized prices the SSD is large and given
the SSD determines the ranking for the cointegration approach they score poorly.
This also indicates a previously mentioned flaw in the approach of [Rad et al., ],
given some of these spreads score well on the stationarity test and show potential
for trading, but due to the SSD ranking they would rank too low to be picked up.
Overall, the expected signature approach provides an improved ranking compared to
the classic method benchmark, however, the new method currently does not manage
to predict the pairs trading PnL behaviour.

5.4 Trade execution

In the final results section, the results of the optimal execution strategy are discussed.
Assuming the selection strategy is capable of selecting the optimal pairs for pairs
trading over the next trading period, the optimal execution algorithm aims to
maximise the potential profit of trading the selected spreads. Chapter 4 provides a
description of the trading environment and the Deep Q-learning agent which are used
in order to maximise the trading profit. To assess the performance of the trading
agent and given the debatable results of the optimal pair selection, the DQL-agent is
trained and tested on a pre-selected spread. The chosen spread is the spread between
Capricorn Energy and Pennon Group. This spread is chosen because of two reasons.
The first reason is that the normalized asset prices act more in line with an expected
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Table 5.6: This table shows the top 20 spreads from the test set with their actual
PnL value. Furthermore is shows where the assets rank for the expected signature
(ES) model, and the cointegration model. The t-statistic (t-stat) and the p-value

(p-val) are added as cointegration test result.

Actual Rank Actual PnL Spread ES Model
Rank

Cointegration
Model Rank t-stat p-val

1 35.99 ASHTEAD GROUP - RECKITT BENCKISER GROUP 1146 2509 -1.941 0.313
2 35.90 ANTOFAGASTA - RECKITT BENCKISER GROUP 615 2416 -1.909 0.328
3 35.51 ANTOFAGASTA - RENISHAW 113 2478 -2.212 0.202
4 35.16 ANTOFAGASTA - DIAGEO 361 2459 -1.281 0.638
5 34.77 ANTOFAGASTA - ADVANCED MED.SLTN.GP. 392 2502 -2.330 0.163
6 34.65 ANTOFAGASTA - AMLIN DEAD - 02/01/16 544 2427 -1.974 0.298
7 34.58 ASHTEAD GROUP - ASTRAZENECA 561 2522 -2.477 0.121
8 34.44 ANTOFAGASTA - INTERMEDIATE CAPITAL GP. 432 2422 -1.466 0.550
9 34.29 ANTOFAGASTA - IMPERIAL BRANDS 28 2439 -2.642 0.085

10 34.24 ANTOFAGASTA - SCOTTISH MORTGAGE 497 2500 -3.734 0.004
11 34.16 ANTOFAGASTA - HISCOX DI 131 2466 -3.263 0.017
12 33.93 ASHTEAD GROUP - BG GROUP DEAD - 15/02/16 723 2530 -2.481 0.120
13 33.91 ASHTEAD GROUP - SEVERN TRENT 329 2515 -2.242 0.191
14 33.91 ANTOFAGASTA - NEXT 553 2381 -0.897 0.789
15 33.90 ANTOFAGASTA - IMI 9 2465 -2.092 0.248
16 33.90 ASHTEAD GROUP - REXAM DEAD - 01/07/16 22 2528 -2.481 0.120
17 33.88 ASHTEAD GROUP - GALLAHER GROUP DEAD - 18/04/07 415 2527 -2.481 0.120
18 33.80 ASHTEAD GROUP - SSE 322 2517 -2.340 0.159
19 33.80 ASHTEAD GROUP - RELX 548 2523 0.315 0.978
20 33.77 ASHTEAD GROUP - VANQUIS BANKING GROUP 237 2531 -1.419 0.573

Figure 5.4: The figure shows the 100 days trading period normalized stock prices for
Antofagasta and Reckitt Benckiser Group. The normalized price of Reckitt Benckiser
Group stays flat, while the normalized price of Antofagasta changes substantially.

pair for pairs trading, given they are mean reverting but also present multiple trading
opportunities over a 100 day trading period. The second reason is that for these two
assets, there is actually a fundamental reason for them to be mean-reverting, given
both assets are energy market related companies. In the following, first the training
over multiple episodes is presented and discussed, and second the performance over
the test set is presented and compared to the benchmark trading methodology.

5.4.1 Training

As described in the methodology, the deep Q-learning agent is trained over multiple
synthetically produced episodes according to Algorithm 6. For the training of the
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agent to trade the spread for Capricorn Energy and Pennon Group, 150 episodes of
100 trading days are generated. For each episode an additional 20 days of spread
values are added to the data of every episode, with 20 days being the required lag
values that form the state together with the current spread value and the current
position. The reward of the agent is calculated according to Algorithm 5. For
each episode, the cumulative reward is determined and saved. If the agent learns
it is expected that over time the cumulative reward per episode should improve on
average. Figure 5.5 shows the evolution of the average cumulative reward over the
150 training episodes of the deep Q-learning agent and the random agent. While
the average cumulative reward of the random agent is close to zero, the average
cumulative reward of the learning agent increases over time. In addition, the episodic
rewards of the DQL agent are shown as well to show the variability in performance
of the agent. From this figure, one can conclude that the agent manages to learn how
to maximise the total reward over time for trading a spread. Furthermore, the smart
agent, on average, outperforms an agent that is trading randomly indicating the
agent is making thoughtful decisions when trading the spread for Capricorn Energy
and Pennon group. Figure 5.6 provides the training evolution of the Deep Q-learning
agent over the same episodes, but with a transaction penalty included in the reward
function. From the figure it can be seen that it takes the agent longer to learn at
the start, although this is by design. Under the same ϵ-greedy policy for the reward
function with transaction costs the agent would revert to not trading at all. Hence,
the agent required more time to explore and figure out the dynamics of the system.
In order to facilitate for this, the decay was slowed down. Learning with transaction
costs seems to have cause some form of regularization, with less large negative drops
below the random agent performance.

5.4.2 Performance

In order to assess the performance of the trained agent over the test period, the
algorithm is slightly adjusted. Figure 5.7 shows the normalized prices and for the
Capricorn Energy - Pennon Group pair, while Figure 5.8 shows the spread and
the borders for two times the standard deviation and full convergence. Table 5.7
provides the performance of the different methods based on the reward function. It
is important to note that the reward function does not translate immediately to
returns, as it punishes the trader for holding a position where the spread goes up,
while this is not reflected in a buy and hold to conversion strategy. When assessing
the trading strategy of the different actors, the DQL agent manages to take position
at spread value 2.5, which is the maximum, but sells very fast. This is due to the
additional reward provided for exiting a position, otherwise, the agent would learn
to benefit from holding longer. The benchmark method would, however, hold the
position for a lot longer. Analysing the eventual return of both strategies, the return
is similar, however, the benchmark method would hold the position for longer which
brings more exposure to risk.
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Figure 5.5: The figure shows the learning process of the deep q-learning agent
over 150 episodes plotting the cumulative reward from every episode and the average
cumulative reward over the episodes. As a benchmark, a random agent is used for the
same 15o episodes. The figure shows that the smart agent outperforms the random

agent over time.

Table 5.7: Table shows the total episodic reward for trading on the test set according
to the reward function of Trading Environment. The rewards are shown for the Deep
Q-learning agent after learning 150 episodes, for the random agent which was run
10000 times to get an average performance on the test set, and for the standard
deviation method (St. Dev. Method). The DQL Agent clearly outperforms the other
methods when comparing total rewards. The best total reward is indicated in blue

Method Test Result (Episodic Reward)
Deep Q-learning Agent 0.53
Random Agent (10’000 runs) -0.34
St. Dev. Method -0.55
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Figure 5.6: The figure shows the learning process of the deep q-learning agent
over 150 episodes plotting the cumulative reward from every episode and the average
cumulative reward over the episodes. In this case the reward function includes a
transaction penalty. As a benchmark, a random agent is used for the same 15o
episodes. The figure shows that the smart agent outperforms the random agent over

time.

Figure 5.7: The figure shows the normalised prices of Capricorn Energy vs. Pennon
Group over the test period
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Figure 5.8: The figure shows the spread of Capricorn Energy vs. Pennon Group
over the test period and the borders indicating the level of two times the standard
deviation and full convergence. This provides an indication of the classic execution

method
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Chapter 6

Conclusion

The goal of this thesis was to research a new methodology for pairs trading that
involves the selection of optimal pairs for pairs trading based on the expected signature
of the spread and the trading of optimal pairs using a reinforcement learning agent.
In order to rank the optimal pairs, the signature of the spread over the future trading
period is predicted based on the relation between the signature of a window of
historic spreads and the next spread value, with the expected PnL over that trading
period calculated based on the relation between the signature and the pairs trading
PnL of the spreads. For the optimal trading of the spread, a Deep Q-learner is
used, providing the required infrastructure to learn an agent in a continuous setting.
The results show that there is a strong relationship between the signature of the
spread truncated at order 10 and the trading PnL. However, the relation between the
signature of historic spreads and the next spread value proves difficult to ascertain.
The main cause for a limited performance of the model is the lack of qualitative
data labels. The method was not able to rank the best pairs for pairs trading, but
outperformed the benchmark method based on cointegration. Looking at the optimal
execution algorithm, the deep Q-learning agent shows to outperform the agent that
chooses random actions and the benchmark trading method based on two times
the standard deviation and full conversion when comparing the cumulative rewards.
Comparing the cumulative rewards does not only reward buying high and selling
low, but also punished holding an increasing spread. To conclude, when assessing
the pair selection and optimal execution separately, the strategy shows the potential
of outperforming the classical methods that are used as a benchmark.

The thesis shows strong potential for further research on the application of signatures
in pairs trading and using a deep reinforcement learner for trading the spreads. Given
the strong relation between the signatures of the spreads and the pairs trading PnL, it
shows that signatures are a promising tool to identify high potential pairs for trading.
There are two potential directions that can be indicated regarding the improvement
of the selection model. The first option is a revision of the data and the expected
signature model. With more data points and/or a different, more complicated, model
like an LSTM, there is a potential to further improve the expected PnL prediction. A
second option is only relying on historical data like the classical methods of distance
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and cointegration and developing a signature kernel that can be used for ranking
pairs. Regarding the reinforcement learner, here it is clear that the agent is able to
learn, and the next step is to directly link the cumulative rewards of the agent with
actual trading returns.

In conclusion, this thesis provides an insightful look on the predictive performance
of the expected signatures model for ranking pairs for pairs trading and shows the
potential of a deep reinforcement learning agent for profitably trading a spread.
Furthermore, important insights in the relation between the signature of a spread
and its PnL for pairs trading provides potential for further research.
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Appendix A

Python Code

The following Appendix considers the code that was used in order to implement the
described methodology and to produce the reflected results.

A.1 Data

1 class DataLayer:
2 def init (self, source: str, meta source: str, nr assets=None) −>

None:
3 self.source = source
4 self.meta source = meta source
5 self.nr assets = nr assets
6 self.name dictionary = None
7 self.data = None
8 self.return data = None
9 self.normalized prices = None

10 self.spreads = None
11 self.spread returns = None
12 self.get clean data()
13 self.get asset names()
14 self.get return data()
15 self.get normalized prices()
16 self.get spreads()
17 self.get spread returns()
18
19 def get clean data(self)−>None:
20 """Removes missing datapoints makes sure that all time series are

of equal length and datetime index is set."""
21 self.data = pd.read csv(self.source)
22 self.data = self.data.dropna(axis=1)
23 self.data = self.data.rename(columns={'Unnamed: 0':'Time stamp'})
24 self.data.set index('Time stamp',inplace=True)
25 if self.nr assets:
26 self.data = self.data[self.data.columns[:self.nr assets]]
27
28 # additional data cleaning
29 # Set date time format
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30 self.data.index = pd.to datetime(self.data.index, format='ISO8601
')

31 # Filter out weekend days
32 self.data = self.data[self.data.index.dayofweek < 5]
33
34 def get return data(self)−>None:
35 """Calculates the daily returns and removes the first line given

it's an na."""
36 self.return data = self.data.pct change()
37 self.return data = self.return data.dropna()
38
39 def get normalized prices(self)−>None:
40 """Calculates normalized prices in order to calculate the spreads

."""
41 # Get normalised prices by dividing through the first value
42 self.normalized prices = self.data / self.data.iloc[0]
43 # Remove stocks that are delisted
44 stocks = self.data.columns
45 delisted stocks = []
46 for stock in stocks:
47 if "DELIST" in stock:
48 delisted stocks.append(stock)
49 self.normalized prices.drop(delisted stocks, axis=1, inplace=True

)
50 # Only keep stocks that do not die out in penny stocks and remove

outliers
51 self.normalized prices = self.normalized prices[self.

normalized prices.sum().sort values(ascending=False).index]
52 if len(self.normalized prices.columns) > 102:
53 self.normalized prices = self.normalized prices[self.

normalized prices.columns[2:103]]
54 # Only keep the data points for which the spread becomes

establihed
55 self.normalized prices.iloc[500:]
56
57 def get spreads(self)−>None:
58 """Calculates the spreads betweeen the normalized prices"""
59 asset pairs = list(itertools.combinations(self.normalized prices.

columns,2))
60 dict spreads = {}
61
62 # Spread is defined as the absolute value of the difference

between normalized prices
63 for pair in asset pairs:
64 spread = abs(self.normalized prices[pair[0]] − self.

normalized prices[pair[1]])
65 dict spreads[f'{pair[0]} − {pair[1]}'] = spread
66
67 # Set spreads dataframe
68 self.spreads = pd.DataFrame(dict spreads)
69 self.spreads = self.spreads.iloc[1:]
70
71 def get spread returns(self)−>None:
72 """Calculates the daily returns on the spread."""
73 self.spread returns = self.spreads.pct change()
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74 self.spread returns = self.spread returns.dropna()
75 self.spread returns = self.spread returns.iloc[1:−1]
76
77 def get asset names(self)−>None:
78 """Replaces the ISIN with the asset full name."""
79 self.meta data = pd.read csv(self.meta source)
80 self.name dictionary = dict(zip(self.meta data.iloc[:,0], self.

meta data['NAME']))
81 self.data = self.data.rename(columns=self.name dictionary)
82
83 def visualise(self, nr of timeseries=10, data=None, title=None)−>None

:
84 """Allows to visualise the different data types."""
85 columns = data.columns
86 if nr of timeseries < len(columns):
87 columns = columns[:nr of timeseries]
88
89 plt.figure(figsize=(14,7))
90 for column in columns:
91 plt.plot(data.index, data[column], label=column)
92 plt.title(title)
93 plt.xlabel('Time')
94 plt.ylabel('Value')
95 plt.legend()
96 plt.show()

A.2 Pair selection

1 class PairSelection:
2 """Determines the pairs that are optimal for pairs trading."""
3
4 def init (self, data source: str, data meta source: str,

trading window=6, expected signature order=3,
expected signature lag value=200, pnl signature order=10, alpha=1,
step=20, nr assets=None) −> None:

5 self.data layer = DataLayer(source=data source, meta source=
data meta source, nr assets=nr assets)

6 self.df data = self.data layer.data
7 self.df returns data = self.data layer.return data
8 self.df returns data cum = self.data layer.normalized prices
9 self.df spreads = self.data layer.spreads

10 self.df spreads returns = self.data layer.spread returns
11 self.trading window = trading window
12 self.expected sig order = expected signature order
13 self.expected signature lag value = expected signature lag value
14 self.pnl sig order = pnl signature order
15 self.pnl regression data = None
16 self.expected regression data = None
17 self.spreads = None
18 self.start day = None
19 self.end day = None
20 self.pnl model = None
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21 self.optimal pairs = None
22 self.alpha = alpha
23 self.step = step
24
25 def split datetime range by months(self):
26 """Creates a split of the available trading days for training and

testing purposes."""
27 # Initialize a list to store the split points
28 split points = []
29
30 current date = self.start day
31
32 while current date < self.end day:
33 next split date = current date + relativedelta(months=self.

trading window)
34
35 if next split date > self.end day:
36 next split date = self.end day
37
38 split points.append(pd.to datetime([current date,

next split date]))
39 current date = next split date
40
41 return split points
42
43 def calculate PnL(self, df spreads pnl, col):
44 """Calculates a specific Pnl for a given column of a spreads

dataframe, which means calculating the
45 PnL of a certain asset pair over a certain period."""
46 # find the indices of all local maxima and minima in the time

series
47 indices max = argrelextrema(df spreads pnl[col].values, np.

greater)[0]
48 indices min = argrelextrema(df spreads pnl[col].values, np.less)

[0]
49 # Combine indices of maxima and minima
50 extrema indices = np.concatenate((indices max, indices min))
51 # Sort the indices to preserve the order
52 extrema indices = np.sort(extrema indices)
53 # Calculate absolute differences between consecutive extrema
54 differences = [−(df spreads pnl[col].iloc[extrema indices[i+1]] −

df spreads pnl[col].iloc[extrema indices[i]])
55 for i in range(len(extrema indices) − 1)]
56 # Given we only trade from the max in the ideal case, we only

count the positive differences
57 positive differences = [diff for diff in differences if diff>0]
58 return sum(positive differences)
59
60 def calculate signature es(self, time series):
61 """Calculate the signatures of the 2d path of the spread. Should

be given as a list with dimenions nxd."""
62 time points = [x/len(time series) for x in range(0, len(

time series))]
63 # time augmentation of the path
64 path = np.array(list(zip(time points, time series)))
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65 return iisignature.sig(path, self.expected sig order)
66
67 def calculate signature pnl(self, time series):
68 """Calculate the signatures of the 2d path of the spread. Should

be given as a list with dimenions nxd."""
69 time points = [x/len(time series) for x in range(0, len(

time series))]
70 # time augmentation of the path
71 path = np.array(list(zip(time points, time series)))
72 return iisignature.sig(path, self.pnl sig order)
73
74 def get pnl regression data(self):
75 """Generates the Dataframe that can be used for regressing the

PnL of a trading period on the signature of the time series of that
trading period."""

76 self.spreads = self.df spreads.columns
77 self.start day = self.df spreads.index[0]
78 self.end day = self.df spreads.index[−1]
79 date splits = self.split datetime range by months()
80 regression data = {spread: [] for spread in self.spreads}
81
82 for date split in date splits:
83 df spreads trading period = self.df spreads.loc[date split

[0]:date split[1], :]
84 df spreads trading period.reset index(drop=True, inplace=True

)
85 for spread in self.spreads:
86 values = [f'{date split[0]} − {date split[1]}', 0, 0]
87 values[1] = self.calculate PnL(df spreads trading period,

spread)
88 values[2] = self.calculate signature pnl(

df spreads trading period[spread].values)
89 regression data[spread].append(values)
90
91 return regression data, date splits
92
93 def get pnl regression dataframe(self):
94 """Transforms the dictionary with PnLs and corresponding

signatures for each spread in a dataframe that can be used for linear
regression."""

95 signature pnl data, date splits = self.get pnl regression data()
96 flattened data = []
97
98 # prepare regression dataframe from pnl regression data list
99 for spread in self.spreads:

100 for entry in signature pnl data[spread]:
101 dates = entry[0]
102 value = entry[1]
103 array values = entry[2].tolist()
104 flattened data.append([dates, value] + array values + [

spread])
105 columns = ['Date', 'Value'] + [f'Signature {i+1}' for i in range

(2**(self.pnl sig order+1)−2)] + ['Spread']
106 self.pnl regression data = pd.DataFrame(flattened data, columns=

columns)
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107
108 # Cut off test data to avoid any data snooping
109 self.test dates = f'{str(date splits[−2][0])} − {date splits

[−2][1]}'
110 self.test data = self.pnl regression data.loc[self.

pnl regression data['Date'] == self.test dates,:]
111 self.pnl regression data = self.pnl regression data.loc[˜(self.

pnl regression data['Date'].isin([self.test dates])),:]
112
113 # Sort PnL data by
114 self.pnl regression data.sort values(by='Value', ascending=False,

inplace=True)
115
116 def get pnl regression(self):
117 """Regresses the sigantures on the PnL values for all available

data and provides the coefficients to calculate the expected PnL."""
118 # Set parameters
119 y pnl = self.pnl regression data['Value']
120 X pnl = self.pnl regression data.drop(['Date', 'Value', 'Spread'

], axis=1)
121 self.X pnl = X pnl
122
123 self.pnl scalar = RobustScaler()
124 X pnl scaled = self.pnl scalar.fit transform(X pnl)
125 alphas = [1e−2, 1e−1, 1, 1e1, 1e2, 1e3, 1e4, 1e5]
126
127 # Set model and regress
128 self.pnl model = RidgeCV(alphas=alphas)
129 self.pnl model.fit(X pnl scaled, y pnl.values)
130
131 def get expected regression dataframes(self, spread):
132 """Determines for each spread the dataframe that is used for

regression analysis and production of the expected signature."""
133 data = []
134
135 for k in range(0, len(self.df spreads)−(self.

expected signature lag value+3), self.step):
136 data.append(list(self.calculate signature es(
137 self.df spreads[self.spreads[i]].values.tolist()[k:k+(

self.expected signature lag value+1)]))
138 + [self.df spreads[self.spreads[i]].values.tolist()[k+(

self.expected signature lag value+1)]] + [spread])
139
140 return data
141
142 def get expected regression dataframes parallel(self):
143 # Use ProcessPoolExecutor to parallelize the task
144 columns = [f'Signature {i+1}' for i in range(2**(self.

expected sig order+1)−2)] + ['Value'] + ['Spread']
145
146 with ProcessPoolExecutor() as executor:
147 # Schedule the execution of the function for each spread
148 futures = [executor.submit(self.

get expected regression dataframes, spread) for spread in self.
spreads]
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149
150 # Collect the results as they are completed
151 list results = []
152 for future in futures:
153 list result = future.result() # Blocks until the future

is done
154 list results += list result
155
156 self.expected regression data all = pd.DataFrame(list results,

columns=columns)
157
158 def get expected signature(self, spread):
159 """Calculates the expected signature for the next trading window

for a given spread."""
160 # Set data
161 df = self.expected regression data all.loc[:, self.

expected regression data all['Spread']==spread]
162 result = [spread, 0, True, True]
163
164 # Set input and output
165 y = df['Value']
166 X = df.drop(['Value', 'Spread'], axis=1)
167 # Scale features
168 scaler = RobustScaler()
169 X scaled = scaler.fit transform(X)
170 # Fit model
171 alphas = [1e−1, 1, 1e1, 1e2, 1e3, 1e4]
172 model = RidgeCV(alphas=alphas)
173 model.fit(X scaled, y.values)
174
175 # Predict the next spreads
176 trading days = int(self.trading window/12*200)
177 new spreads = []
178
179 last values = self.df spreads[spread].values.tolist()[−self.

expected signature lag value:]
180
181 try:
182 for i in range(1,trading days+1):
183 last spread sig = scaler.transform(self.

calculate signature es(last values).reshape(1,len(X.columns)))
184 new spread = model.predict(last spread sig)
185 self.new spreads.append(new spread[0])
186 last values = last values[1:] + list(new spread)
187
188 # Calculate the expected signature and rescale with PnL

scalar
189 final signature = self.calculate signature pnl(new spreads)
190 rescale final signature = self.pnl scalar.transform(

final signature.reshape(1,len(self.X pnl.columns)))
191
192 # predict PnL from the PnL regression
193 try:
194 pnl = self.pnl model.predict(rescale final signature)
195 result[1] = pnl[0]
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196 except:
197 result[3] = False
198 print('pnl failure')
199 except:
200 result[2] = False
201
202 return result
203
204 def get optimal pairs(self):
205 """Calculates the expected pnl for every pair and ranks the

different pairs."""
206 # Get PnL data and Regression
207 self.get pnl regression dataframe()
208 self.get pnl regression()
209 # Get expected signature data
210 self.get expected regression dataframes parallel()
211 # Initialize results
212 self.results = []
213 for spread in self.spreads:
214 result = self.get expected signature(spread)
215 self.results.append(result)
216
217 # Filter results but keep the old resutls
218 self.unfiltered results = self.results
219 columns = ['Spread', 'PnL Value', 'ES Succes', 'PnL Succes']
220 results dataframe = pd.DataFrame(self.results, columns=columns)
221 useful results = results dataframe.loc[(results dataframe['ES

Succes']==True) & (results dataframe['PnL Succes']==True) & (abs(
results dataframe['PnL Value'])<150),:]

222 useful results.sort values(by=['PnL Value'], ascending=False,
inplace=True)

223 self.filtered results = useful results
224
225 return useful results

A.3 Optimal trade execution

A.3.1 Trading Environment

1 class TradingEnv(gym.Env):
2 def init (self, spread data, lag values=20, transaction included=

False, transaction cost=0.002):
3 """Initiates the trading environment."""
4 super(TradingEnv, self). init ()
5
6 self.transaction included = transaction included
7 self.transaction cost = transaction cost
8
9 self.lag values = lag values

10 self.spread data = spread data
11 self.action space = spaces.Discrete(3)
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12 self.observation space = spaces.Box(low=np.array([np.min(
spread data), −1]), high=np.array([np.max(spread data), 1]), dtype=np
.float32)

13
14 self.actions = [] # To record actions
15 self.profits = [] # To record cumulative rewards
16 self.capital positions = [] # To record invested capital
17
18 self.reset()
19
20 def reset(self):
21 """Resets the trading environment after every episode."""
22 self.position = 0
23 self.current step = self.lag values
24 self.total profit = 0
25 self.current capital = 1
26 self.actions.clear()
27 self.profits.clear()
28 return self. next observation()
29
30 def next observation(self):
31 """Provides the next state."""
32 return np.array(self.spread data[self.current step−self.

lag values:self.current step+1].tolist() + [self.position])
33
34 def step(self, action):
35 """Steps to the next state given a specific action by the agent.

"""
36 previous spread = self.spread data[self.current step]
37 self.current step += 1
38 current spread = self.spread data[self.current step]
39
40 if self.transaction included==True:
41 reward = self. calculate reward transaction cost(action,

previous spread, current spread)
42 else:
43 reward = self. calculate reward(action, previous spread,

current spread)
44
45 self.total profit += reward
46
47 self.actions.append(action)
48 self.profits.append(self.total profit)
49 self.capital positions.append(self.current capital)
50
51 done = self.current step >= len(self.spread data) − 1
52
53 obs = self. next observation()
54
55 return obs, reward, done, {}
56
57 def calculate reward(self, action, previous spread, current spread):
58 """Rewards the agent for holding a position when the spread

converges."""
59 reward = 0
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60 if self.position == 1:
61 reward = previous spread − current spread
62 self.current capital *= 1 + (previous spread − current spread

)/previous spread
63 if action == 0 and self.position == 0:
64 self.position = 1
65 elif action == 2 and self.position == 1:
66 self.position = 0
67 reward += previous spread − current spread
68 return reward
69
70 def calculate reward transaction cost(self, action, previous spread,

current spread):
71 """Rewards the agent for holding a position when the spread

converges."""
72 reward = 0
73 if self.position == 1:
74 reward = previous spread − current spread
75 self.current capital *= 1 + (previous spread − current spread

)/previous spread
76 if action == 0 and self.position == 0:
77 self.position = 1
78 reward −= current spread * self.transaction cost
79 elif action == 2 and self.position == 1:
80 self.position = 0
81 reward += previous spread − current spread − current spread *

self.transaction cost
82 return reward
83
84 def render(self, mode='human', close=False):
85 """Provides a status update."""
86 print(f'Step: {self.current step}, Position: {"Bought" if self.

position == 1 else "Sold" if self.position == −1 else "None"}, Total
Profit: {self.total profit}')

87
88 def plot trading results(self):
89 """Plots the action of the agent and the return made by the agent

."""
90 # Identifying the indices for buy, sell, and hold actions
91 buy signals = [i+self.lag values for i, action in enumerate(self.

actions) if action == 0]
92 sell signals = [i+self.lag values for i, action in enumerate(self

.actions) if action == 2]
93 hold signals = [i+self.lag values for i, action in enumerate(self

.actions) if action == 1]
94
95 plt.figure(figsize=(14, 7))
96 # Plotting the spread data
97 plt.plot(self.spread data, label='Spread', color='gray', alpha=1)
98 # Marking buy actions with green arrows
99 plt.scatter(buy signals, self.spread data[buy signals], label='

Buy', marker='ˆ', color='green', alpha=0.3)
100 # Marking sell actions with red arrows
101 plt.scatter(sell signals, self.spread data[sell signals], label='

Sell', marker='v', color='purple', alpha=0.3)
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102 # Adding blue dots for hold actions
103 plt.scatter(hold signals, self.spread data[hold signals], label='

Hold', marker='o', color='blue', alpha=0.3)
104 # Plotting the cumulative returns
105 plt.plot([0]*20 + self.profits, label='Cumulative Return', color=

'C2')
106
107 plt.title('Spread Trading Strategy and Returns')
108 plt.xlabel('Day')
109 plt.ylabel('Spread / Return')
110 plt.xlim(self.spread data.index[−100], self.spread data.index

[−1])
111 plt.legend()
112 plt.show()

A.3.2 Deep Q-learning agent

1 class DQLAgent:
2 def init (self, state dim, num actions, learning rate=0.001, gamma

=0.99, epsilon start=0.9,
3 epsilon end=0.01, epsilon decay steps=500,

epsilon exponential decay=0.99,
4 replay capacity=1000, tau=5, batch size=64):
5 """Initializes the agent with all relevant parameters."""
6
7 # Initialize agent parameters
8 self.state dim = state dim
9 self.num actions = num actions

10 self.gamma = gamma
11 self.epsilon = epsilon start
12 self.epsilon end = epsilon end
13 self.epsilon decay steps = epsilon decay steps
14 self.epsilon decay = (epsilon start − epsilon end) /

epsilon decay steps
15 self.epsilon exponential decay = epsilon exponential decay
16 self.tau = tau
17 self.batch size = batch size
18 self.total steps = 0
19
20 # Experience replay buffer
21 self.experience = deque(maxlen=replay capacity)
22
23 # Build the online and target networks
24 self.online network = self.build model(state dim, num actions)
25 self.target network = self.build model(state dim, num actions,

trainable=False)
26
27 # Update the target network initially
28 self.update target()
29
30 def build model(self, state dim, num actions, trainable=True):
31 """Generates a multi−layered neural network."""

67



A. Python Code

32 # Define the neural network architecture
33 model = Sequential()
34 model.add(Dense(64, input dim=state dim, activation='relu',

kernel regularizer=l2(0.01), trainable=trainable))
35 model.add(Dense(64, activation='relu', trainable=trainable))
36 model.add(Dropout(0.2))
37 model.add(Dense(num actions, activation='linear', trainable=

trainable)) # Q−values for each action
38 model.compile(loss='mean squared error', optimizer=tf.keras.

optimizers.Adam())
39 return model
40
41 def update target(self):
42 """Updates the weight of the target network, depending on tau."""
43 # Copy weights from online network to target network
44 self.target network.set weights(self.online network.get weights()

)
45
46 def epsilon greedy policy(self, state):
47 """Decides to either exploit based on current Q−values or explore

."""
48 # Implement epsilon−greedy policy
49 if np.random.rand() <= self.epsilon:
50 return np.random.choice(self.num actions) # Exploration
51 else:
52 q values = self.online network.predict(np.expand dims(state,

0)) # Exploitation
53 return np.argmax(q values) # Choose action with the highest

Q−value
54
55 def memorize transition(self, state, action, reward, next state, done

):
56 """Memorizes the transitions so they can be used in the

experience replay."""
57 # Store transition in the replay buffer
58 self.experience.append((state, action, reward, next state, done))
59
60 def experience replay(self):
61 """Trains the agent using experience replay."""
62 # Ensure enough samples for a batch
63 if len(self.experience) < self.batch size:
64 return
65
66 # Randomly sample a minibatch from the replay buffer
67 minibatch = list(zip(*sample(self.experience, self.batch size)))
68 states, actions, rewards, next states, done = map(np.array,

minibatch)
69
70 # Calculate target Q−values using the target network
71 next q values = self.target network.predict(next states)
72 max next q values = np.max(next q values, axis=1)
73 target q values = rewards + (1 − done) * self.gamma *

max next q values
74
75 # Get predicted Q−values from the online network
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76 q values = self.online network.predict(states)
77
78 # Set the Q−value for the taken action to the target Q−value
79 q values[range(self.batch size), actions] = target q values
80
81 # Train the online network using the adjusted Q−values
82 self.online network.train on batch(states, q values)
83
84 # Decay epsilon for exploration−exploitation balance
85 if self.epsilon > self.epsilon end:
86 self.epsilon −= self.epsilon decay
87 else:
88 self.epsilon *= self.epsilon exponential decay
89
90 # Periodically update the target network
91 self.total steps += 1
92 if self.total steps % self.tau == 0:
93 self.update target()
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