
DATA-DRIVEN PORTFOLIO DRAWDOWN 
OPTIMIZATION WITH GENERATIVE MODELING
Literature Review 
Update 27-01-2022



CONTENT
‒ INTRODUCTION

‒ POTENTIAL CONTRIBUTIONS

‒ LITERATURE OVERVIEW

‒ MAIN METHODOLOGIES USED

‒ NEXT STEPS 



INTRODUCTION
3



INTRODUCTION

4

- Financial Machine Learning 

- Discriminative vs. Generative

- Generative vs. Monte Carlo

- Drawdowns vs. Returns



DISCRIMINATIVE VS. GENERATIVE ML
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Discriminative ML

- Revolves around conditional ℙ(Y|X),  learn set of 
parameters Θ from the data to predict labels Y given a 
distribution of features X. 

- Given some 𝑌:ℝ!, 𝑋:ℝ", with N typically large, learn Θ
using a flexible mapping f: 𝑓#(𝑋): ℝ" → ℝ! such that some 
ℒ(𝑌, 𝑓#(𝑋)) is minimized. 

Examples include simple regularized regressions (LASSO, 
Ridge, Elastic nets),  support vector machines (SVM) and 
neural network (NN) regressors.

X 𝑓!(𝑋) Y

𝑚𝑖𝑛! ℒ(𝑌, 𝑓!(𝑋))



DISCRIMINATIVE VS. GENERATIVE ML
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Generative ML 

- Revolves around unconditional distribution ℙ(X), learn Θ to capture 
structure/symmetries in (high-dimensional) ℙ(X); Goal: compress the data 
in much fewer dimensions, while preserving the important features of the 
original data.

- Given some 𝑋:ℝ", with N typically large, learn Θ, using a flexible mapping f 
on some space 𝑍:ℝ$, with 𝐾 << 𝑁, called a representation, 

𝑓# 𝑋 :ℝ" → ℝ$: 𝑋 → 𝑍. 
- Mapping 𝑓#%&(𝑍): ℝ$ → ℝ": 𝑍 → 𝑋' can be used for sampling new samples 
𝑋', such that 𝑋 and 𝑋' are not distinguishable statistically according to some 
loss metric ℒ(𝑋, 𝑋'). 

Examples include variational autoencoders (VAE), generative adversarial 
networks (GAN), restricted Boltzmann machines (RBM), and flow-based / 
normalizing flows (NF).

Z

𝑓!(𝑋)

𝑓!
,-(Z)

X’

X

𝑚𝑖𝑛! ℒ(X, X′))



“ SCENARIO-BASED SCIENCE IS MAYBE THE BEST WE CAN DO 
WHEN DEALING WITH COMPLEX SYSTEMS. ”
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DOYNE FARMER



GENERATIVE ML VS. MONTE CARLO
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- Finding an optimal mapping between a source distribution Z and the 
original data ℙ(𝑋) is not a new problem in finance. 

- This has been a key area of research in Monte Carlo and the 
development of bottom-up stochastic processes.

- This has been instrumental in calibrating risk measures and optimizing 
portfolios under the physical measure ℙ, but crucial in constructing 
derivative pricing tools under the risk-neutral measure ℚ. 

The core difference with the machine learning approach, is that in a 
traditional Monte Carlo the map 𝑓!"#(𝑋) has to be specified a priori (before 
estimation/calibration) as some closed-form system of equations called the 
data generating process (DGP).



GENERATIVE ML VS. MONTE CARLO
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- Arguably the most well-known process is the Black-Scholes model that 
describes the diffusion paths of asset prices as geometric Brownian motions. 

- In this example, 𝑍 ∼ 𝑁(0,1) and Θ is a tuple of the drift and volatilities (𝜇, 𝜎)
such that the corresponding market generator becomes:

𝑓!"#(𝑍): 𝑋$= 𝜇 + 𝜎𝜖$

where 𝑋$ is the logreturn at t, Θ = (𝜇, 𝜎), and 𝜖$ is an instance of 𝑍 at t. 
Remark that 𝜇 = 𝑟, the risk-free rate under ℚ. 

The second difference is that such an a priori specified 𝑓!"#(𝑍) does not require 
the estimation of 𝑓!(𝑋) and the evaluation of ℒ(𝑋, X′), but rather relies on 
estimating Θ directly using some form of loglikelihood maximization on 
historical data (called calibration), while the search for the optimal Θ in the DGP-
free approach is called learning or training. 



DRAWDOWNS VS. RETURNS
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- Paths:
𝛾: [0, 𝑇] → ℝ!, 𝛾 = {𝛾", 𝛾#, . . . , 𝛾!}

- Logreturn and autocorrelation:

𝑋$ 𝑡, Δ𝑡 = 𝑙𝑛 𝑆$ 𝑡 + Δ𝑡 − ln(𝑆$ 𝑡 )
𝑐𝑜𝑟𝑟(𝑋%(𝑡 + 𝜏, Δ𝑡), 𝑋%(𝑡, Δ𝑡))

- Time-augmented return path:

𝑟$: [0, 𝑇] → ℝ#, 𝑟$ = {𝑡, (𝑋$(0, Δ𝑡), 𝑋$(1, Δ𝑡), 𝑋$(𝑇, Δ𝑡))}

- Return space:
𝑅%: [0, 𝑇] → ℝ!&", 𝑅% = {𝑡, 𝑟", 𝑟#, . . . , 𝑟!}

- T < 𝑁'(),  𝑁)$* = ⌊𝑁'()/𝑇⌋ non-overlapping or 𝑁)$* = 𝑁'()+,-./$'0) − 𝑇
overlapping return sequences (i.e. scenarios or simulations):

𝑅 = (𝑅", 𝑅#, . . . , 𝑅1!"#)

Paths of spot asset price S 



DRAWDOWNS VS. RETURNS
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- Traditionally stats for 𝜇% and 𝜎% (or 𝜌%, possibly 𝑟∗) estimated from R 

- Weighted simulation 𝒘𝒋 :

- EWMA: exponentially decreasing 𝑤( to smaller 𝑗
- Conditional sampling: attach 𝑤( = 0 to sequences not satisfying 

the historical conditions, and 𝑤( = 1 if they do

- Volatility-filtered sampling: 𝑤( =
)
)!

- No estimation of stats (non-parametric – “Estimate Nothing”):

- Use R outright (Naive historical simulation)
- Resample using random indices in j in {1,…,𝑁*%+} with 

replacement (= non-parametric (𝑤(-weighted) block bootstrap with 
block size T) Paths of spot asset price S 



DRAWDOWNS VS. RETURNS
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- Stylized facts of financial returns (surveyed by Cont 2001), most notably:

(1) the existence of fat tails in the return distribution, 
(2) the absence of linear autocorrelation (cf. above), 
(3) volatility clusters (large absolute returns are highly autocorrelated), 
(4) leverage effects (absolute returns and returns are negatively correlated). 

Much of the work regarding stochastic DGPs discussed above come down to 
(explicitly) addressing these stylized facts!

- R often viewed from its return distribution (P&L) right away
- Static !!! Not a path.
- Once decided on Δ𝑡 estimates of 𝜇%, 𝜎% and 𝑟 ∗ invariant to sequence shifts, 

as well as popular risk conditionals on the P&L distribution such as value-
at-risk (VaR) and expected shortfall (ES). 

While path characteristics matter, even for returns R! 
E.g. monofractal scaling of properties of risk (i.e. risk ∝ Δ𝑡)
Valuable information about the sequential structure, i.e. the path structure, is lost.

𝑃&𝐿: ℙ(X)



DRAWDOWNS VS. RETURNS
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- Drawdown paths:

𝑥%(𝑡, Δ𝑡) = max$",$(𝑆%(𝑡-)) − 𝑆%(𝑡)

𝜉%: [0, 𝑇] → ℝ., 𝜉% = {𝑡, (𝑥%(0, Δ𝑡), 𝑥%(1, Δ𝑡), 𝑥%(𝑇, Δ𝑡))}

= Dynamic generalization of a deviation measure on the path space
(Chekhlov, 2005)

- Drawdown space:
Ξ(: [0, 𝑇] → ℝ/0#, Ξ( = {𝑡, 𝜉#, 𝜉., . . . , 𝜉/}

- Drawdown sequences (𝑇 < 𝑁12* ):

Ξ = (Ξ#, Ξ., . . . , Ξ3#$%)

𝑃&𝐿: ℙ(X) ℙ(x) 
(‘flat’ drawdown distribution)

Drawdown paths

(‘flat’ return distribution)



DRAWDOWNS VS. RETURNS
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- Challenges when modeling (conditional) drawdown sequences and expected 
drawdown (optimization) loyal to historical sample:

- Drawdown sequences 𝚵 have important path structure
=> Match the distribution in the path space, not just the flat x distribution 

(while for R this is synonymous in 99.9% of applications)

- Stochastic processes have not been developed for 𝜉-processes. There 
are no off-the-shelf DGPs for these processes, nor stylized facts proposed 
or agreed on.

- Possible answers:
- What does it mean to compare distributions in the path space, i.e.

comparing random variables versus sequential random variables? See 
below implications for on signatures and the sequential signature kernel.

- To leapfrog the lack of DGPs, one could use DGP-free modeling (if paths 
are sufficiently realistic) 𝑃&𝐿: ℙ(X) ℙ(x) 

(‘flat’ drawdown distribution)(‘flat’ return distribution)

Drawdown paths



PORTFOLIO DRAWDOWN OPTIMIZATION
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Naive drawdown optimization:

min
4

𝔼((𝜉(𝑤))
s.t. 𝜉( = 𝑤Ξ(

𝑤𝐈/ = 1

Portfolio drawdown optimization:

min
4

𝔼((𝜉(𝑤))
s.t. 𝜉(,$ = 𝑚(,$ − 𝑤Π(,$

𝑚(,$ ≥ 𝑚(,$"#
𝑤𝐈/ = 1

Π is a space of price paths that has a correspondance to Ξ.

For now it is clear that the path structure is critical because
of local maxima 𝑚. Not preserved when modeling R, crucial
path feature in Ξ.

𝑇 = 𝑁bcd

T = 𝑁!"# = 2609, 𝑁#$% = 1

Example: For 1 scenario the (unconditional) expected
drawdown over j, 𝔼&, is just the average historical drawdown 
(light blue area)



PORTFOLIO DRAWDOWN OPTIMIZATION
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Naive drawdown optimization:

min
4

𝔼((𝜉(𝑤))
s.t. 𝜉( = 𝑤Ξ(

𝑤𝐈/ = 1

Portfolio drawdown optimization:

min
4

𝔼((𝜉(𝑤))
s.t. 𝜉(,$ = 𝑚(,$ − 𝑤Π(,$

𝑚(,$ ≥ 𝑚(,$"#
𝑤𝐈/ = 1

Example for 16 random scenarios Π(
(blue line), 𝑚( (red line) and 𝜉(
(light blue area).

𝑇 = 20

𝑁!"# = 2609, 𝑁#$%= 2589, T = 20

16 random j, 
for j in {1, …, 2589}

𝑤& = 1, ∀𝑗



EXAMPLE: DOW 30
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Portfolio Value (2003-12-31 = 1) Yearly Returns Days of drawdown exceeding threshold

- Example backtest DOW30, point-in-time universe with no lookahead information
- Simple exponential weighted j, block bootstrap historical simulation (monthly paths).
- Most notable feature: drawdown reduction. Figure on the right denotes the number of days (y-axis) where a 

certain drawdown threshold (x-axis) was exceeded.



EXAMPLE: DOW 30
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Underwater curve



POTENTIAL CONTRIBUTIONS
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POTENTIAL CONTRIBUTIONS
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- Input representation for Portfolio Optimization: 
explore use of generative ML for portfolio optimization (not the focus in 
earlier studies!); relevant path features (e.g. drawdown structure for 
drawdown optimization) necessitates apt input representation (Ξ vs. R), 

- Loss metric: focus on reproducing drawdown structure after dimension 
reduction, i.e. construct non-linear common factors in the downside risk of 
the investible universe (vs. traditional return / volatility decomposition)

- Conditional sampling: match non-stationary features of financial time series 
by learning on the relevant market conditions; understand sensitivities of the 
optimal portfolio to these market conditions.

Economic Priors: 
financial/economic prior 
on factors, e.g. macro-economic
conditions, …

Geometric Priors:  
financial/economic prior 
on path features, e.g. 
drawdown, drift, vol, …



LITERATURE OVERVIEW
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LITERATURE OVERVIEW
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- Market Generator =

generative models with the specificity 
of modelling financial markets

(such as spot asset prices, option 
prices and volatilities, or order streams 
in limit order books)



MAIN METHODOLOGIES
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MAIN METHODOLOGIES (TECHNICAL PART)

̶ Signature-based MMD loss

̶ Generative ML architectures

̶ Detailed CVAE discussion

̶ Conditional sampling and explainable ML 
(XML)

24



SIGNATURE-BASED MMD LOSS

̶ Signatures = a graded summary of path-structured data, preserving important 
geometrical features of the path, with applications such as recognition of 
handwritten Chinese characters, classification of bipolar and borderline disorders, 
malware detection, detection of Alzheimer disease, human action recognition, and 
many more (see: datasig.ac.uk). 

̶ Applications in finance include market simulation and optimal trade execution.

25

datasig.ac.uk


SIGNATURE-BASED MMD LOSS
̶ Kernels 101: kernels 𝑘 are a class of functions of two random variables that measure the 

similarity between the two variables. 
For instance:

𝑘(𝑋, 𝑌): [𝑎, 𝑏]×[𝑎, 𝑏] → ℝ

is a kernel since it maps two random variables X and Y with support on [𝑎,𝑏] on a metric 
that is (commonly) small when X and Y are close to each other, and vice versa. 

Examples: radial basis functions (RBF) such as the exponential, Fourier, Nystroem
kernels and Gaussian, Euclidean, Polynomial kernels, …

Applications: most notably

(1) feature maps where kernels are essentially inner products between feature vectors X 
(which allows for using linear methods in non-linear problems, e.g. support vector 

machines),

(2) basis functions for approximation spaces 
(i.e. changing the basis of data to approximate functions by allowing more variation in 

regions with more data), 

(3) and many more…

26

Kernel embeddings: 
RBF (left), Fourier RBF (middle), Nystroem (right) 
(source: Sklearn)

https://scikit-learn.org/stable/modules/kernel_approximation.html


SIGNATURE-BASED MMD LOSS
̶ Positive definite kernels, such as the Gaussian kernel, that satisfy

e
%6#

7

e
(6#

7

𝑐%𝑐(𝑘(𝑥%, 𝑥() ≥ 0

for any 𝑥% in X and any pair 𝑐%, 𝑐( ∈ ℝ, also called Mercer kernels have the 
property that there exists a mapping 𝜙 between X and Y and a space ℋ equipped 
with an inner product, such that the kernel value 𝑘(𝑥, 𝑦) can be rewritten as an 
inner product in ℋ:

𝑘(𝑥, 𝑦) = ⟨𝜙(𝑥), 𝜙(𝑦)⟩

̶ Since ℋ should be equipped with an inner product it is a so-called Hilbert space, 
and it reproduces the kernel by means of that inner product of two mapped features 
𝜙(. ). This is known as a reproducing kernel Hilbert space (RKHS) in machine 
learning.

27



SIGNATURE-BASED MMD LOSS

- Maximum mean discrepancy: a popular measure of distance between two distributions in machine 
learning. Suppose we have two sets of samples X and Y and we want to measure the distance 
between them. The following MMD computes the mean squared difference of the statistics 𝜙 between 
the two sets

Or  MMD = #
3'
∑%6#3 ∑%(6#

3 𝜙 𝑥% 𝜙 𝑥%8 −
.
39

∑%6#3 ∑(6#9 𝜙 𝑥% 𝜙 𝑦% + #
9'∑(6#

9 ∑((6#
9 𝜙 𝑦% 𝜙 𝑦%8

For instance taking 𝜙 equal to be identity 𝜙(𝑥)=𝑥, this gives rise to the squared difference in means 
between X and Y, and other choices give rise to higher order moments of X and Y.

Remark that in the previous equation the distance between X and Y are only written in terms of the 
inner products between the mappings 𝜙(. ) of X and Y, which means that we can propose a (positive 
definite) kernel such that:

MMD = #
3'
∑%6#3 ∑%(6#

3 𝑘(𝑥%, 𝑥%8) −
.
39

∑%6#3 ∑(6#9 𝑘(𝑥%, 𝑦%) +
#
9'∑(6#

9 ∑((6#
9 𝑘(𝑦%, 𝑦%8)

28

𝑀𝑀𝐷 = || #
3
∑%6#3 𝜙 𝑥% − #

9
∑(6#9 𝜙 𝑦( ||.



SIGNATURE-BASED MMD LOSS

- The above summarizes the main purpose of kernels in this application, namely 
that the distance between two samples in terms of a feature map 𝜙 can be 
evaluated without having to actually compute all the mappings 𝜙(. ) of X and Y, 
which can lead to dramatic improvements computationally. 

- This famous result is often referred to as the kernel trick.

29

MMD = #
3'
∑%6#3 ∑%(6#

3 𝑘(𝑥%, 𝑥%8) −
.
39

∑%6#3 ∑(6#9 𝑘(𝑥%, 𝑦%) +
#
9'∑(6#

9 ∑((6#
9 𝑘(𝑦%, 𝑦%8)



SIGNATURE-BASED MMD LOSS
- Path integral: (path as on slide 10)

∫:
; 𝑓(𝛾$)𝑑𝛾$ = ∫:

; 𝑓(𝛾$)
<=)
<$
𝑑𝑡 = ∫:

; 𝑓(𝛾$)𝛾$𝑑𝑡

̶ Let us consider a particular path integral defined for any single index 𝑖 ∈ {1,2, . . . , 𝐷}:

𝑆(𝛾):,;% = v
:

;
𝑑𝛾% = 𝛾;% − 𝛾:%

which is the increment of the path along the dimension 𝑖 in {1,2, . . . , 𝐷}.
̶ For any pair of indexes 𝑖, 𝑗 ∈ {1,2, . . . , 𝐷}, let us define:

𝑆(𝛾):,;
%,( = ∫:

; ∫:
$! 𝑑𝛾%𝑑𝛾(

̶ likewise for triple indices in 𝑖, 𝑗, 𝑘 ∈ {1,2, . . . , 𝐷}:

𝑆(𝛾):,;
%,(,- = v

:

;
v
$"

$!
v
:

$"
𝑑𝛾%𝑑𝛾(𝑑𝛾-

̶ we can continue for the collection of k indices 𝑖#, 𝑖., . . . , 𝑖- ∈ {1,2, . . . , 𝐷}:

𝑆(𝛾):,;
%*,%',...,%!,...,%" = ∫:

; . . . ∫$!
$!+* . . . ∫$*

$' ∫:
$* 𝑑𝛾%*𝑑𝛾%' . . . 𝑑𝛾%"(12)

which we call the k-fold iterated integral of 𝛾 along {𝑖#, 𝑖., . . . , 𝑖-}.

30



SIGNATURE-BASED MMD LOSS 
̶ The signature is the collection of all the iterated integrals, consisting of all possible combinations of the indices in D (for any length of

combination, hence it is an infinite series). 
However, it is important to note that these signatures are ordered along this length, which is called the order or level of the signature.

The signature of a path 𝛾: [0, 𝑇] → ℝ/ denoted 𝑆(𝛾):,; is the collection (an infinite series) of all the iterated integrals of 𝛾.

Formally, 𝑆(𝛾):,; is the sequence of real numbers

𝑆(𝛾):,; = (1, 𝑆(𝑋):,;# , 𝑆(𝑋):,;. , . . . , 𝑆(𝑋):,;/ , 𝑆(𝑋):,;
#,# , 𝑆(𝑋):,;

#,. , . . . )

where the zeroth term is 1 by convention and the superscript runs along the set of multi-indices:

𝑊 = {(𝑖#, 𝑖., . . . , 𝑖-)|𝑘 ≥ 1; 𝑖#, 𝑖., . . . , 𝑖- ∈ {1,2, . . . , 𝐷}}
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SIGNATURE-BASED MMD LOSS 
̶ We often consider the 𝑀-th level truncated signature, defined as the finite collection of all terms where the superscript is of max 

length M:
𝑆9(𝛾) = (1, 𝑆#(𝛾), 𝑆.(𝛾), . . . , 𝑆9(𝛾))

̶ where 𝑆-(𝛾) denotes all the signature terms of order k, e.g.

𝑆#(𝛾) = (𝑆(𝛾)#, 𝑆(𝛾)., . . . , 𝑆(𝛾)/)
𝑆.(𝛾) = (𝑆(𝛾)#,#, 𝑆(𝛾)#,., . . . , 𝑆(𝛾)/,/)

Geometric and financial interpretation : 
- the geometric interpretation of the first order is the increment of the path along each dimension. In financial terms, this corresponds to 

the drift. 
- the second order terms correspond to the Levy area or the surface covered between the chord connecting the first and last 

coordinate in each dimension and the actual path, corresponding to a measure of volatility of the path. 

- These two global features are captured by the first two orders, while more fine-grained, local features are captured by higher-order 
terms, as becomes apparent when looking at the factorial decay of 𝑆

32



SIGNATURE-BASED MMD LOSS 
̶ Factorial decay: signatures are graded summaries of paths.

̶ Terry Lyons shows that for paths of bounded variation (𝛾: [0, 𝑇] → ℝ𝕕 is of bounded variation if all changes 
∑" |𝛾#234 − 𝛾#2| are bounded (finite) for all partitions 0 ≤ 𝑡$ ≤ 𝑡% ≤. . . ≤ 𝑇), the following norm can be imposed on the 
signature terms (with 1 ≤ 𝑖%, . . . , 𝑖& ≤ 𝐷):

||4 . . . 4 𝑑𝛾"4𝑑𝛾"5 . . . 𝑑𝛾"6|| ≤
||𝛾&||%

𝑛!

with

||𝛾||% = sup
#2⊂[$,*]

<
"

|𝛾#234 − 𝛾#2|

where we take the supremum over all partitions of [0,T].

̶ This theorem guarantees that higher-order terms of the signature have factorial decay, i.e. that the order of 
signatures imply a graded summary of the path, first describing global and increasingly more local characteristics of 
the path. This implies that the truncated signature for increasing orders throws away less and less information, 
similar to the low-rank approximation in PCA.
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SIGNATURE-BASED MMD LOSS 
̶ Signature as moment generating function in the path space: sequential random variables

̶ For stochastic processes that generate vector-valued data, there are well-known statistical tests for determining whether two samples 
are generated by the same stochastic process, such as the sequence of (normalised) moments and the Fourier transform (complex 
moments). As discussed, the MMD allows to compare these moments by embedding two random variables in Hilbert space using 
kernel approximation.

̶ For path-valued data, Chevyrev and Oberhauser introduce an analogue to normalised moments using the signature. They prove 
that for suitable normalizations 𝜆, the sequence

(𝔼[𝜆(𝑋)+v 𝑑𝑋⊗+])+@:

̶ determines the law of X uniquely. They argue that the moments in the path space up to order m are preserved (i.e. a bijective 
property) for the truncated signature up to order m. 

̶ Signature as optimal feature map 𝝓(. ) for embedding paths:
The reasons are twofold: 
(1) universality, which implies that non-linear functions of the data are approximated by linear functionals in feature space and 
(2) characteristicness, which is exactly their merit, i.e. that the expected value of the feature map characterizes the law of the random 
variable.
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SIGNATURE-BASED MMD LOSS 
̶ Signature kernel: In essence, it is just the inner product between the two signature vectors of two random variables in the path space.

Let x and y be two paths supported on [0, 𝑇], 𝑥: [0, 𝑇] → ℝ/ and 𝑦: [0, 𝑇] → ℝ/. The signature kernel k: [0, 𝑇]×[0, 𝑇] → ℝ is defined as
𝑘A(𝑥, 𝑦) = ⟨𝑆(𝑥), 𝑆(𝑦)⟩

Intuitively, say for 𝑆 truncated at order 1, 𝑘A measures the similarity between the drifts of the two paths. Truncated at order 2, 𝑘A looks 
at drift and volatility similarity, and so and so forth.

̶ Signature MMD:  MMD can be used as a deterministic loss function in a generative model as it is a distance measure between two 
random variables, for instance the fake generated data and the true input data. When the path structure of the random variable is 
crucial, the choice of traditional kernels is inappropriate and we should use a sequential kernel. As described above, this is exactly 
what signatures allow us to do. Let us first generalize the MMD expression to:

𝑀𝑀𝐷(𝜇, 𝜈) = 𝑠𝑢𝑝B∈ℋ𝐸E∼G[𝑓(𝑋)] − 𝐸E∼H[𝑓(𝑋)](19)
̶ Hence, MMD is literally the maximum expected distance between two functions in the embedded space ℋ. We can further rewrite:

𝑀𝑀𝐷A(𝜇, 𝜈) = 𝐸EE(∼G[𝑘A(𝑋, 𝑋8)] − 2𝐸E∼G,I∼H[𝑘A(𝑋, 𝑌)] + 𝐸II(∼H[𝑘A(𝑌, 𝑌8)]
̶ The signature MMD. The expression in itself is easy to compute, but its computational performance hinges on how efficiently we can 

evaluate 𝑘A.
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SIGNATURE-BASED MMD LOSS 
̶ PDE kernel trick: a recent result concerns a kernel trick for sequential kernels, the signature partial differential 

equation (PDE) kernel trick. Salvi et al. 2021 proved that the signature kernel can be written as the solution of a 
hyperbolic PDE belonging to the family of so-called Goursat problems. This substantially speeds up the evaluation 
of 𝑘, and allows for GPU-optimized parallelization of the PDE solver. Formally, we can write:

𝛿-𝑘,
𝛿𝑠𝛿𝑗

= ⟨�̇�(𝑠), �̇�(𝑗)⟩𝑘,

̶ where 𝑘,(𝑋(0), . ) = 𝑘,(. , 𝑌(0)) = 1 and �̇�(𝑠) = ./
.#
|#01 and �̇�(𝑗) = .2

.#
|#03, which is a Goursat PDE. They further show 

that this PDE can be written as a function of a static kernel 𝜅, e.g. the RBF or Matern kernel:

𝛿-𝑘,
𝛿𝑠𝛿𝑗

= (𝜅(𝑋(𝑠), 𝑌(𝑗)) − 𝜅(𝑋(𝑠 − 1), 𝑋(𝑗)) − 𝜅(𝑋(𝑠), 𝑌(𝑗 − 1)) + 𝜅(𝑋(𝑠), 𝑌(𝑗 − 1)))𝑘,

̶ After an appropriate choice of 𝜅, equation can then be solved using state-of-the-art PDE solvers and efficiently 
parallelized over GPU. This allows for an efficient evaluation of 𝑘, in 𝑀𝑀𝐷,.

̶
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PROPERTIES: SIGNATURE UNIVERSALITY AND 
DRAWDOWN

Universality. Non-linear continuous functions of the unparameterized data streams are 
universally approximated by linear functionals in the signature space. 

Theorem (Lyons, Ni). Denote by 𝑆 the function that maps a path 𝑋 from 𝐾 to its signature 𝑆(𝑋). 
Let 𝑓: 𝐾 → ℝ be any continuous function. Then, for any 𝜖 > 0, there exists 𝑀 > 0, and a linear 
functional 𝐿 acting on the truncated signature of degree 𝑀 such that

sup
�∈�

𝑓(𝑋) − 𝐿, 𝑆�(𝑋) < 𝜖
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̶ E.g. f(P) = ∫�
� (max

�4��
(𝑃�4) − 𝑃�)𝑑𝑡, or the expected drawdown of prices P over T, is non-linear 

due to the max operation. 
̶ So, linear regression of examples true f(P) on 𝑃� makes little sense:
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̶ However, universality assures that f(X) can be 𝜖 −approximated arbitrarily well (depended on 
the estimation of L and truncation level M), i.e. drawdown as a linear combination of signature 
terms.

̶ For instance, linear regression (= L from OLS) of f(P) on S 𝑃 , M=10, yields:
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̶ Drawdown as a linear combination of signature terms: based on pre-trained L (linear 
combination) the drawdowns of 2 samples (e.g. fake/real) can easily be evaluated by their 
signatures as well, without requiring max-operators (e.g. within the system of differentiable 
equations of our generative model)!!
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GENERATIVE ML ARCHITECTURES
̶ Generative Adversarial Networks (GAN)

̶ Generative Moment Matching Networks (GMMN)

̶ Variational Autoencoders (VAE)

̶ Restricted Boltzmann Machines (RBM)

̶ Flow-Based Models / Normalizing Flows (NF)
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GAN
̶ Arguably the most popular architecture in generative ML, with well-known 

applications in computer vision (deepfake etc).

̶ Trained by a adversarial game between two networks, a decoder network 
(previously 𝑓!"#(Z)) and a discriminator network.

̶ Samples a latent variable z from a simple prior distribution ℙ(𝑍), e.g. Gaussian 
or Uniform, followed by a decoder network, the transform 𝐺(𝑧), called the 
Generator.

̶ The Discriminator 𝐷(. ) outputs a probability of a given sample coming from 
the real data distribution. Its task is to distinguish samples from the real 
distribution ℙ(𝑋) from 𝐺(𝑧). 

̶ The decoder tries to produce samples as close to the original distribution 
possible, as to fool the discriminator. 

̶ This gives rise to the following well-known minimax problem: 

min
J
max
/
𝔼K∼ℙ(E)[𝑙𝑜𝑔(𝐷(𝑥)] + 𝔼O∼ℙ(P)[𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧))]
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GMMN
̶ Simple forward pass through a multi-layer NN from a uniform prior.

̶ MMD loss (also called MDD networks)

̶ Traditionally with Gaussian kernel, where it can be proven that it is a 
discrepancy measure between all the moments of the generated fake versus 
the true data distribution.

̶ More performant in combination with an autoencoder architecture.
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VAE
̶ Introduced by Kingma and Welling in 2014 (‘Variational inference using Bayes’), 

and second most popular architecture (after GAN) in generative ML, with 
applications to market generators in Buehler 2020, Fung 2021, and Bergeron 
2021.

̶ Autoencoder: 𝑓!(𝑋) and 𝑓!"#(𝑍) are both neural networks, here respectively 
called the encoder and decoder network.

̶ Characterized by their joint distribution over the latent variables Z and the 
observed variables X: ℙ(𝑥,𝑧)=ℙ(𝑥|𝑧)ℙ(𝑧)

̶ Kingma 2014 approximates the posterior function ℙ(𝑧|𝑥) using an encoder 
model 𝑓!(𝑋). Two contributions are key in appraising their work. 

(1) They derive a lower bound for ℙ!(𝑋) by comparing this posterior with 
samples from an actual Gaussian using the Kullback-Leibler divergence
log(ℙ(𝑥)) ≥ 𝔼B,(K)[𝑙𝑜𝑔(ℙ(𝑥|𝑧))] − 𝐾𝐿(𝑓!(𝑥)||ℙ(𝑧))

where maximizing the right-hand side (the Evidence Lower Bound 
(ELBO)) corresponds to maximizing the loglikelihood of the data 
distribution as a function of Θ.

(2) They use a mathematical trick called the reparametrization trick that 
allows for backpropagation (see below) over the latent space Z. 
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RBM
̶ Energy-based models dating back to Harmonium in 1980s (Smolensky 1986)
̶ Bipartite graphs (two-layer neural networks), with one visible layer 𝑣 that 

represents ℙ(𝑋) and one hidden layer ℎ representing ℙ(𝑍). 
̶ Restricted refers to the fact that there are no connections or model weights Θ

between nodes within each layer, only across the two layers.
̶ Each node in the graph represents a binary stochastic variable
̶ Boltzmann refers to the Boltzmann energy function that measures the 

likelihood of the states of the graph (which in statistical physics is called a 
Markov Random Field) by its joint distribution:

ℙ(𝑣, ℎ) =
1
𝑍
exp(−𝐸(𝑣, ℎ))

𝐸(𝑣, ℎ) = −e
%6#

+

𝑎%𝑣% −e
(6#

7

𝑏(ℎ( −e
%6#

+

e
(6#

7

𝑤%,(𝑣%ℎ(

where 𝑣% and ℎ( denote the individual nodes or state variables in resp. 𝑣 and ℎ. 
In this case 𝑣% and ℎ( are stochastic binary, hence Bernouilli, variables, but this 
can be approximated with Gaussian-Bernouilli variables for continuous 
distributions such as financial returns.
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RBM
̶ The goal of training this network is maximizing its joint likelihood, which 

corresponds to minimizing the energy of the graph's state:

̶ Through Markov Chain Monte Carlo (MCMC) sampling techniques such as 
Gibbs sampling and improved alterations of it such as contrastive 
divergence, it can be shown that the energy decreases as ℙ!(𝑋), the 
distribution of the visible layer with parameters Θ, approaches the true ℙ(𝑋), or 
the distribution of the data.

̶ Once training has converged, one can iteratively sample noise in 𝑣 and back 
and forth with ℎ until we have new samples of ℙ(𝑋8). 

̶ This was the approach in the original Market Generator paper by Kondratyev
and Schwarz 2019. The impressive results were confirmed by Lezmi 2020.
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NORMALIZING FLOWS
̶ Flow-based generative models or normalizing flows (NF) is a class of neural networks

which use differentiable mappings to approximate simple bijective functions called
diffeomorphisms. These transform a simple distribution Z to a complex one, step by step.

̶ In our notation 𝑓!"#(𝑍) would be a neural network that stacks these diffeomorphisms (such
as linear neural splines, for a recent overview see Kobyzev, 2020) as to approximate a
divergence measure between the target distribution ℙ(𝑋) and the sampled distribution
ℙ!(𝑋8).

̶ For instance, Wiese 2021 uses NFs to approximate (i.e. using gradient descent) the
Monte Carlo-approximated KL-divergence:

∇!𝐾𝐿(ℙ(𝑋)||ℙ!(𝑋8)) = −𝔼K∼ℙ(E)(∇!𝑙𝑛(ℙ!(𝑋8)))

≈
1
𝑛e
%6#

7

∇!(𝑙𝑛(|𝑑𝑒𝑡𝐽B,-*(𝑓!(𝑥%))|) − 𝑙𝑛ℙ(𝑓!(𝑥%)))

where J represents the Jacobian of the neural network 𝑓!"#, the matrix of first order
derivatives of the network to the latent space values. The determinant of the Jacobian
thus plays a crucial role in approximating the KL using MC. For the computation of the
determinant to be efficient, the computation of the determinant of the individual
diffeomorphisms is typically chosen simple (e.g. linear splines). Making them sufficiently
simple but expressive enough is a key element of research in NFs.
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DETAILED LOOK: CVAE
̶ VAE: (+) converges fast, generally more stable and gives us intepretable posteriors after training, (-) less flexible than GAN
̶ Let us have a deeper look at the architecture
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DETAILED LOOK: CVAE
Architecture

̶ As input we have the 𝐷-dimensional ambient space X or the physical data 
domain that we can measure (e.g. 𝑅 or Ξ)

̶ Using a flexible neural network mapping 𝑓!: ℝ/ → ℝQ, 𝐾 << 𝑁, called the 
encoder, we compress the dimension of the data into a K-dimensional latent
space 𝑍, e.g. 10-dimensional.

̶ Using the reparametrization trick we map 𝑍 onto a mean 𝜇 and standard 
deviation 𝜎 vector, i.e. onto a 𝐾-dimensional Gaussian, e.g. a 10-dimensional 
normal distribution. 

̶ The decoder neural network 𝑓!"#: ℝQ → ℝ/ maps the latent space back to the 
output space ℙ!(𝑋8) where 𝑋8 can be considered reconstructed samples in 
the training step, or genuinely new or fake samples in a generator step.

̶ The quality of the VAE clearly depends on the similarity between ℙ(𝑋) and 
ℙ!(𝑋8)
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DETAILED LOOK: CVAE
̶ Let us now zoom in on 𝑓#(𝑋) and 𝑓#%&(𝑍). Each neural network consist of one layer of J mathematical units 

called neurons:

𝑓#7: = 𝐴(4
8

9

𝜃8,:𝑥8)

̶ Every neuron takes linear combinations 𝜃8 of the input data point 𝑥8 and is then activated using a non-linear
activation function 𝐴, such as rectified linear units (ReLU), hyperbolic tangent (tanh) or sigmoid. In this paper 
we use a variant of ReLU called a leaky ReLU:

𝐿𝑅𝑒𝐿𝑈(𝑥) = 𝟏;<=𝛼𝑥 + 𝟏;>=𝑥

where 𝛼 is a small constant called the slope of the ReLU.
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DETAILED LOOK: CVAE
All neurons J are linearly combined into the next layer (in this case Z):

𝑍-: = e
(

R

𝜃(,-𝑓!!

for every k in K.

The decoder map can formally be written exactly like the encoder, but in reverse order.

The loss function of a VAE generally consists of two components, the latent loss (ℒS) and the reconstruction loss (ℒT):
ℒ 𝑋, 𝑋8 = 𝛽ℒS + 1 − 𝛽 ℒT

The latent loss is the Kullback-Leibler discrepancy between the latent distribution under its encoded parametrization, the posterior 
𝑓!(𝑋) = ℙ!(𝑍|𝑋), and its theoretical distribution, e.g. multi-variate Gaussian ℙ(𝑍). Appendix B in Kingma 2014 offers a simple expression 
for ℒS. The reconstruction loss is the cost of reproducing ℙ!(𝑋8) after the dimension reduction step, and originally computed by the root of 
the mean squared error (RMSE or 𝐿2-loss) between X and X'.

ℒ 𝑋, 𝑋8 = 𝛽
1
2e

-

Q

1 + 𝜎 − 𝜇. − exp 𝜎 + 1 − 𝛽 𝔼 𝑋 − 𝑋8 |.

The parameter 𝛽 can be tuned to get so-called disentangled latent representations in the 𝛽-VAE architecture
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DETAILED LOOK: CVAE
Training process

- Optimal loss values ℒ∗ are determined by stochastically sampling batches of data and alternating 
forward and backward passes through the VAE. 

- For each batch the data is first passed through the encoder network and decoder network (forward 
pass), after which ℒ is evaluated in terms of Θ. At each layer, the derivative of ℒ vis-a-vis Θ can easily 
be evaluated. 

- Next (the backward pass), we say the calculated loss backpropagates through the network, and Θ are 
adjusted in the direction of the gradient ∇Gℒ with the learning rate as step size.

- The exact optimizer algorithm we used for this is Adam (Adaptive moments estimation)

- Finally, we can also use a concept called regularization, which penalizes neural models that become 
too complex or overparametrized. We used a tool called dropout, that during training randomly sets a 
proportion of parameters in Θ equal to zero, and leaves those connections at zero that contribute the 
least to the prediction.
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DETAILED LOOK: CVAE
̶ In summary, the hyperparameters of this architecture are: 

(1) the number of neurons in the encoder, 
(2) the number of neurons in the decoder, 
(3) the number of latent dimensions K, 
(4) the learning rate,
(5) the optimizer algorithm and 
(6) the dropout rate. 

We opted for the following set-up (which was optimized using Grid Search): 100, 100, 10, 0.001, Adam, 0.0.

̶ After training, in the sampling or generation step, we start from a random 𝐾-dimensional noise 𝜖 ∼ ℙ(𝑍)
which is 𝐾-variate Gaussian. Now, we only need a decode step to generate new samples of ℙ#(𝑋')

53



DETAILED LOOK: CVAE
̶ The importance of conditional factors: e.g. Instrumented PCA (IPCA)
̶ 𝑷𝜣 𝑿8 vs. 𝑷𝜣(𝑿8|𝑪) => Conditional VAE (CVAE)
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CONDITIONAL SAMPLING
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CONDITIONAL SAMPLING
̶ Conditions = financial-economic priors

̶ Selected using LASSO a subset of 
macro conditions based on historical 
impact on total market drawdown 
(Wilshire)

56



CONDITIONAL SAMPLING
̶ Impact of conditions on paths
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CONDITIONAL SAMPLING
̶ Impact of conditions on paths
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CONDITIONAL SAMPLING
̶ Recap (hopefully makes more sense now):

̶ Goal != better prediction 
̶ Goal = better simulation (-> complexity science)

In other words:

Coming up with scenarios that might be obvious for the data, but not for the human/modeller !

̶ Goal 2 = better understanding of sensitivities of optimal portfolios to these conditions (see next slides)
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CONDITIONAL SAMPLING
̶ The aim is to introduce appropriate 𝐶 to our generative model, such that we can evaluate ℙ(𝑋'|𝐶) at the 

current level of 𝐶 as well as for our own scenarios of 𝐶.

̶ For instance, given the current level of volatility, what do drawdown paths and the optimal portfolio look like, 
and which positions are most affected if one gradually increases the volatility to levels seen during the GFC or 
the Covid-19-induced March 2020 meltdown? 

̶ What does one's portfolio look like with current market sentiment, and which positions are likely to be first and 
mostly affected when sentiment turns sour gradually?

60



CONDITIONAL SAMPLING
Shapley (SHAP) values:

̶ Given one set of 𝑛8'09 conditions 𝐶 = (𝐶$)$:{",...,0$%&'}, an optimal portfolio can be seen 
as a linear combination 𝑤9∗, for 𝑑 ∈ 𝐷, where the weights reflect some contribution (of 
risk, return, drawdown) to the optimal portfolio timeseries 𝑤∗𝑅 or 𝑤∗Π. 

̶ Given a set of 𝑁) condition sets 𝒞 = (𝐶@)@:{",...,1!}, each set corresponding to a 𝐶 that 
generates sequences 𝑅 or Π, each C will also correspond to a unique optimal 
portfolio, i.e. for each 𝑘. Now we can see the 𝑤@∗ as the output, and evaluate the 
contribution of each condition 𝐶$ in 𝐶@ to the optimal portfolio. The SHAP values to 
each 𝑤9∗ can then formally be defined as

Φ$(𝑤9∗) = P
A⊂[1!∖{$}]

|𝑆|! (𝑁) − |𝑆| − 1)!
𝑁)!

(𝑤9∗(𝑆 ∪ {𝑖}) − 𝑤9∗(𝑆)))

̶ This is the SHAP Φ$ for condition 𝑖 in 𝐶 in terms of optimal weight 𝑤9∗. Intuitively, for 
the 𝑁) optimal portfolios we evaluate all the subsets S where condition 𝑖 did not 
contribute to the optimal portfolio 𝑤9∗(𝑆) and compare with the optimal portfolios 
where it was 𝑤9∗(𝑆 ∪ {𝑖}). The average contribution of this condition to the optimal 
weight thus constitutes the SHAP value. This allows for visualizations of the 
conditional optimal portfolios, such as waterfall and beeswarm plots, that are popular 
explainable machine learning tools for applications in deep learning and computer 
vision.
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CONDITIONAL SAMPLING: DOW 30 EXAMPLE
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Impact of VIX on optimal DOW portfolio (simple conditional bootstrap)



CONDITIONAL SAMPLING: DOW 30 EXAMPLE
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Impact of VIX on optimal DOW portfolio (simple conditional bootstrap)



CONDITIONAL SAMPLING: DOW
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Impact of VIX on optimal DOW portfolio (simple conditional bootstrap)



NEXT STEPS
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NEXT STEPS
̶ Low-hanging fruit (first on the agenda):

̶ Code: 
‒ 3 open merge requests (MRs) on Gitlab:

‒ Variational Autoencoder Architecture implementation (on R for now, ELBO loss)
‒ General Condition object implementation 
‒ Conditional Weighted Bootstrap (benchmark) implementation

‒ Proposed next MRs: 
‒ Sig-MMD (first try)
‒ GMMN (Sig-MMD) 
‒ Quant-GAN (as computational benchmark)

̶ Bigger questions / conceptual:

̶ Input representation: Further develop input repr for Xi; and link with portfolio paths Pi (inverse transform?)
̶ Loss function: Sig-MMD for drawdown process moment matching
̶ Conditions: Develop macro backdrop to train conditional architecture; connect with macro econ collaborator / work with thesis 

students?
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