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DISCRIMINATIVE VS. GENERATIVE ML

Discriminative ML

- Revolves around conditional P(Y|X), learn set of

parameters O from the data to predict labels Y given a
distribution of features X.

- Given some Y:RM, x: R", with N typically large, learn ©
using a flexible mapping f: fo(X): RY - RM such that some
L(Y, fo(X)) is minimized.

Examples include simple regularized regressions (LASSO,
Ridge, Elastic nets), support vector machines (SVM) and
neural network (NN) regressors.
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DISCRIMINATIVE VS. GENERATIVE ML

Generative ML

X
- Revolves around unconditional distribution P(X), learn 0 to capture ﬂ
structure/symmetries in (high-dimensional) P(X); Goal: compress the data
in much fewer dimensions, while preserving the important features of the
original data. fo(X) “
- Given some X:RY, with N typically large, learn 0, using a flexible mapping f
on some space Z: RX, with K << N, called a representation, “
foX):RN > RK: X - Z. o ming L(X,X"))
- Mapping f5(Z): RX¥ - RN:Z - X' can be used for sampling new samples
X', such that X and X’ are not distinguishable statistically according to some ﬂ
loss metric L(X,X").
-1
Examples include variational autoencoders (VAE), generative adversarial fo ~(Z2) I*
networks (GAN), restricted Boltzmann machines (RBM), and flow-based /

normalizing flows (NF).
SN
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“SCENARIO-BASED SCIENCE IS MAYBE THE BEST WE CAN DO
WHEN DEALING WITH COMPLEX SYSTEMS. ”

DOYNE FARMER
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GENERATIVE ML VS. MONTE CARLO

- Finding an optimal mapping between a source distribution Z and the
original data P(X) is not a new problem in finance.

- This has been a key area of research in Monte Carlo and the
development of bottom-up stochastic processes.

- This has been instrumental in calibrating risk measures and optimizing
portfolios under the physical measure P, but crucial in constructing
derivative pricing tools under the risk-neutral measure Q.

The core difference with the machine learning approach, is that in a
traditional Monte Carlo the map fg ' (X) has to be specified a priori (before
estimation/calibration) as some closed-form system of equations called the
data generating process (DGP).
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GENERATIVE ML VS. MONTE CARLO

- Arguably the most well-known process is the Black-Scholes model that
describes the diffusion paths of asset prices as geometric Brownian motions.

15

- In this example, Z ~ N(0,1) and 0 is a tuple of the drift and volatilities (u, o)
such that the corresponding market generator becomes:

fo '(Z): Xy=pu+ o€,

where X; is the logreturn att, ® = (u, o), and ¢; is an instance of Z at t.
Remark that u = r, the risk-free rate under Q.

Log path

The second difference is that such an a priori specified f5*(Z) does not require

the estimation of fg(X) and the evaluation of L(X,X"), but rather relies on
estimating O directly using some form of loglikelihood maximization on

historical data (called calibration), while the search for the optimal 0 in the DGP- ’ 500 10 150 200
free approach is called learning or training. T (number of days)
N
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DRAWDOWNS VS. RETURNS

Paths:
y:[0,T] - RP,y = {yL,v%...,v"}

Logreturn and autocorrelation:

X;(t,At) = In(S;(t + At)) — In(S;(1)) 2
corr(X;(t + 7, At), X;(t, At))

114

- Time-augmented return path: 10

ri: [0, T] — ]RZ,TL' = {t, (XL(O, At),Xl(l,At),Xl(T,At))}

09

0.8 1
- Return space:

Ri:[0,T] » RP*L R, = {t,ry,1,...,1p} &

00 25 50 15 100 15 150 175 200

T < Nops: Nsim = [Nops/T| non-overlapping or N = Nopservations — T
overlapping return sequences (i.e. scenarios or simulations): Paths of spot asset price S

R = (RllRZI"'IRN

sim)
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DRAWDOWNS VS. RETURNS

- Traditionally stats for u; and o; (or p;, possibly r*) estimated from R
- Weighted simulation w; :

- EWMA: exponentially decreasing w; to smaller j
: Conditional sampling: attach w; = 0 to sequences not satisfying
the historical conditions, and w; = 1 if they do

. Volatility-filtered sampling: w; = Gi
J

- No estimation of stats (non-parametric — “Estimate Nothing”):

- Use R outright (Naive historical simulation)

- Resample using random indices in jin {1,...,Ng;,} with
replacement (= non-parametric (w;-weighted) block bootstrap with
block size T)

GHENT
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DRAWDOWNS VS. RETURNS

- Stylized facts of financial returns (surveyed by Cont 2001), most notably:

12

(1) the existence of fat tails in the return distribution, L RS
(2) the absence of linear autocorrelation (cf. above), /'

(3) volatility clusters (large absolute returns are highly autocorrelated), ’

(4) leverage effects (absolute returns and returns are negatively correlated). )

08

Much of the work regarding stochastic DGPs discussed above come down to .

00 25 50 75 100 s 150 s 200

(explicitly) addressing these stylized facts!

160

- R often viewed from its return distribution (P&L) right away
- Static !!! Not a path.

- Once decided on At estimates of u;, o; and r * invariant to sequence shifts,

as well as popular risk conditionals on the P&L distribution such as value-
at-risk (VaR) and expected shortfall (ES).

140

120

While path characteristics matter, even for returns R!
E.g. monofractal scaling of properties of risk (i.e. risk «< At)
Valuable information about the sequential structure, i.e. the path structure, is lost. T o dw 0 000 0o oos

0.06

= P&L: P(X)
I
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DRAWDOWNS VS. RETURNS

- Drawdown paths: Drawdown paths
030 v'v/\v/“
xi(t, At) = maxe, ¢ (Si(ti) — Si(t) /%//«,\/‘c, “F
Lx 0 '/‘0:4"-,:;'.
£i:[0,T] = R?, & = {t, (x;(0, At), x; (1, At), x;(T, At))}
= Dynamic generalization of a deviation measure on the path space
(Chekhlov, 2005) 0| . . , _ . . ‘ '
- Drawdown space:
E"] [0' T] - RD+1' E] = {t' 51) 52' ey €D} :: -
- Drawdown sequences (T < N, ):

Lo |

- (Ell Ez, caay :‘Nsim)

[1]

0
0.000 0.025 0.050 0.075 0.100 0125 0.150 0175 0200

P&L: P(X) P(x)

(‘flat’ return distribution) (‘flat’ drawdown distribution)

-0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06

N
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DRAWDOWNS VS. RETURNS

- Challenges when modeling (conditional) drawdown sequences and expected
drawdown (optimization) loyal to historical sample:

- Drawdown sequences E have important path structure
=> Match the distribution in the path space, not just the flat x distribution
(while for R this is synonymous in 99.9% of applications)

- Stochastic processes have not been developed for é-processes. There
are no off-the-shelf DGPs for these processes, nor stylized facts proposed
or agreed on.

- Possible answers:
- What does it mean to compare distributions in the path space, i.e.
comparing random variables versus sequential random variables? See
below implications for on signatures and the sequential signature kernel.

- To leapfrog the lack of DGPs, one could use DGP-free modeling (if paths
are sufficiently realistic)

GHENT
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PORTFOLIO DRAWDOWN OPTIMIZATION

Naive drawdown optimization:

min  E;(§(w))
s.t. {fj = \A/ESj
wlP =1

Portfolio drawdown optimization:

min  E(Ew))
St fj,t — mj’t - an,t
7T?iﬂj = 771j,t-1

wl? =1

I1is a space of price paths that has a correspondance to E.

For now it is clear that the path structure is critical because
of local maxima m. Not preserved when modeling R, crucial
path feature in E.

I -
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PORTFOLIO DRAWDOWN OPTIMIZATION

T =
Naive drawdown optimization:
min  E;§(w)) -
st. & =wg; =
wl? =1

00 25 50 75 100 125 150 15 20 00 25 50 75 100 15 150 U5 200 00 25 50 75 100 125 150 U5 200 00 25 50 75 1200 125 150 75 200

Portfolio drawdown optimization:
min  E;(Ew) -
S-t. fj,t — mj,t - Wl_[j’t 092 { ol
mj. = Mjr_q

WI I 1 00 25 50 75 00 125 150 175 20

Example for 16 random scenarios II;
(blue line), m; (red line) and ¢;
(light blue area).
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EXAMPLE: DOW 30

Portfolio Value (2003-12-31 = 1)

Yearly Returns

- Optimizer 0.3 -
64 — DOW

Wb ]“J"“hll

-0.1
2.
-0.2
BN Optimizer
1 - m DOW
- - _0.3<lllll | IR BN RN B B | T T
2004 2006 2008 2010 2012 2014 2016 2018 2020 TULYLN YD ONME YN Q9O
o O O O O 0O 0O 0O 0O 0O 0O 0O 0O 90 O 9 9o O
NN AN N N NN N PN N N PN N N N N N i N

- Example backtest DOW30, point-in-time universe with no lookahead information
- Simple exponential weighted j, block bootstrap historical simulation (monthly paths).
- Most notable feature: drawdown reduction. Figure on the right denotes the number of days (y-axis) where a

certain drawdown threshold (x-axis) was exceeded.
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EXAMPLE: DOW 30

Underwater curve
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POTENTIAL CONTRIBUTIONS

Input representation for Portfolio Optimization: 4
explore use of generative ML for portfolio optimization (not the focus in

earlier studies!); relevant path features (e.g. drawdown structure for

drawdown optimization) necessitates apt input representation (= vs. R),

Loss metric: focus on reproducing drawdown structure after dimension
reduction, i.e. construct non-linear common factors in the downside risk of
the investible universe (vs. traditional return / volatility decomposition)

Conditional sampling: match non-stationary features of financial time series
by learning on the relevant market conditions; understand sensitivities of the

— Geometric Priors:
financial/economic prior
on path features, e.g.
drawdown, drift, vol, ...

——Economic Priors:
financial/economic prior

optimal portfolio to these market conditions. «

GHENT
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on factors, e.g. macro-economic
conditions, ...
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LITERATURE OVERVIEW

- Market Generator =

generative models with the specificity
of modelling financial markets

(such as spot asset prices, option
prices and volatilities, or order streams
In limit order books)

GHENT
UNIVERSITY

Paper Year Architecture Application
Henry-Labordere [29] 2019 GAN Option prices

Wiese et al. [30] 2019 GAN Hedging strategies
Cuchiero et al. [31] 2020 GAN Volatility models

Ni et al. [32] 2020 GAN Spot prices

Wiese et al. [33] 2020 GAN Spot prices

Li et al. [34] 2020 GAN Order book simulation
Storchan et al. [35] 2020 GAN Spot prices
Benedetti [36] 2020 GAN Yield models

Xu et al. [37] 2020 GAN Spot prices

Pardo and Lépez [38] 2020 GAN Spot prices

Buehler et al. [39] 2021 GAN Hedging strategies
Ni et al. [40] 2021 GAN Spot prices
Pfenninger et al. [41] 2021 GAN Spot prices

Rosolia and Osterrieder [42] 2021 GAN Spot prices
Koshiyama et al. [43] 2021 GAN Spot prices

van Rhijn et al. [44] 2021 GAN Spot prices

Marti et al. [45] 2021 GAN Correlation matrices
Coyle et al. [46] 2021 GAN Spot prices

Wiese et al. [47] 2021 NF Spot and Option prices
Kondratyev and Schwarz [48] 2019 RBM Spot prices

Lezmi et al. [49] 2020 RBM / GAN Spot prices

Wang [50] 2021 RBM / VAE Spot prices

Buehler et al. [51] 2020 VAE Spot prices

Fung [52] 2021 VAE Option prices
Frandsen [53] 2021 VAE Hedging strategies
Bergeron et al. [54] 2021 VAE Volatility models
Ning et al. [55] 2021 VAE Volatility models

Table 1: Overview of the market generator literature
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MAIN METHODOLOGIES (TECHNICAL PART)

— Signature-based MMD loss

— Generative ML architectures

— Detailed CVAE discussion

— Conditional sampling and explainable ML
(XML)
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SIGNATURE-BASED MMD LOSS

— Signatures = a graded summary of path-structured data, preserving important
geometrical features of the path, with applications such as recognition of VRV
handwritten Chinese characters, classification of bipolar and borderline disorders, DataSig Edi
malware detection, detection of Alzheimer disease, human action recognition, and
many more (see: datasig.ac.uk).

— Applications in finance include market simulation and optimal trade execution.

Describing complex
sequences of data
from different sources

N
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datasig.ac.uk

SIGNATURE-BASED MMD LOSS

Kernels 101: kernels k are a class of functions of two random variables that measure the
similarity between the two variables.
For instance:

k(X,Y):[a,b]X[a,b] » R

is a kernel since it maps two random variables X and Y with support on [a,b] on a metric
that is (commonly) small when X and Y are close to each other, and vice versa.

Examples: radial basis functions (RBF) such as the exponential, Fourier, Nystroem
kernels and Gaussian, Euclidean, Polynomial kernels, ...

Applications: most notably

Kernel embeddings:
(1) feature maps where kernels are essentially inner products between feature vectors X RBF (left), Fourier RBF (middle), Nystroem (right)
(which allows for using linear methods in non-linear problems, e.g. support vector (source: Sklearn)
machines),

(2) basis functions for approximation spaces
(i.e. changing the basis of data to approximate functions by allowing more variation in
regions with more data),

_{3) and many more...

i | FACULTY OF ECONOMICS ANC
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https://scikit-learn.org/stable/modules/kernel_approximation.html

SIGNATURE-BASED MMD LOSS

— Positive definite kernels, such as the Gaussian kernel, that satisfy

Reproducing
2 — [ kernel Hilbert
Banach i S
(s VY duct
2 cicik(x;, x;) = 0 spaces Hilbert zg)aCeS
=1 =1 spaces
Normed spaces
for any x; in X and any pair ¢;, ¢; € R, also called Mercer kernels have the kVector Spaczs //
property that there exists a mapping ¢ between X and Y and a space H equipped
with an inner product, such that the kernel value k(x, y) can be rewritten as an ’ \
inner product in H': injective mapping cp(.)/ e \
k(x,y) = (p(x), d(¥)) s; HLMET .-
injective mapping ¢(-) \"
— Since H should be equipped with an inner product it is a so-called Hilbert space, sl " ] @
)

and it reproduces the kernel by means of that inner product of two mapped features
¢(.). This is known as a reproducing kernel Hilbert space (RKHS) in machine

learning.

Kay (si,85) = (¥(si), ¥(s;))

GHENT
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SIGNATURE-BASED MMD LOSS

- Maximum mean discrepancy: a popular measure of distance between two distributions in machine
learning. Suppose we have two sets of samples X and Y and we want to measure the distance
between them. The following MMD computes the mean squared difference of the statistics ¢ between

the two sets 1 1
MMD = || T o) — - 3y ()l

Or MMD = %I, BNy ()b — 5 Bt Tty ¢)dO) +35 2 Ty 0090

For instance taking ¢ equal to be identity ¢(x)=x, this gives rise to the squared difference in means
between X and Y, and other choices give rise to higher order moments of X and Y.

Remark that in the previous equation the distance between X and Y are only written in terms of the
inner products between the mappings ¢(.) of X and Y, which means that we can propose a (positive
definite) kernel such that:

1 / 2 1 /
MMD = N2 IiV=1 le_\{=1 k(xi, x;) ~ NM {V=1 29/1:1 k(xi, yi) +WZ§”=1 %:1 k(y;, vi)

GHENT
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SIGNATURE-BASED MMD LOSS

1 / 2 1 /

- The above summarizes the main purpose of kernels in this application, namely
that the distance between two samples in terms of a feature map ¢ can be e

O
evaluated without having to actually compute all the mappings ¢(.) of Xand Y,
which can lead to dramatic improvements computationally. Input Space Feature Space
- This famous result is often referred to as the kernel trick.
o ® ° o) y Decision surface
DL s g 1 -‘vl,-
S -.':-" kernel -'F"'.
o E gm © Nggii_n
R e AN
oo.:.-- ZO 0 inVre o 0 @
SETEMR 22820085254 Soog
2 o %0 g g seben
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SIGNATURE-BASED MMD LOSS

- Path integral: (path as on slide 10)
d T .
fy fardye = [y froSkdt = [ frovedt

— Letus consider a partlcular path integral defined for any single index i € {1,2,...,D}:
. T . . .
SWor = f dy' =yr — Yo
0

which is the increment of the path along the dimension i in {1,2,...,D}.
— Forany pairof indexes i,j € {1,2,...,D}, let us define:

i, j T (t; g
S(y)(l)’:lT — fo fOJ d]/ldy]
— likewise for triple indices in i,j, k € {1,2,...,D}:
S = f j " dyldyldyk
Uk

— we can continue for the collection of k indices iy, i5,...,i; € {1,2, ...,D}:

11,19, Uil T t: t t , . ]
SWor " = ] ...ftjf“ ...ftf J,t dytdy'2...dy"(12)

which we call the k-fold iterated integral of y along {i, i,,..., ir}.

N
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SIGNATURE-BASED MMD LOSS

— The signature is the collection of all the iterated integrals, consisting of all possible combinations of the indices in D (for any length of
combination, hence it is an infinite series).
However, it is important to note that these signatures are ordered along this length, which is called the order or level of the signature.

The signature of a path y: [0, T] - R” denoted S(y)or is the collection (an infinite series) of all the iterated integrals of y.
Formally, S(y)o,r is the sequence of real numbers

SWor = L, S5, SE57 -, SK)r, SK)g1, SX)g7s---)
where the zeroth term is 1 by convention and the superscript runs along the set of multi-indices:

W = {(iy, iy ..., i)k = 1;igip ..., ik €{1,2,...,D}}

GHENT | |
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SIGNATURE-BASED MMD LOSS

— We often consider the M-th level truncated signature, defined as the finite collection of all terms where the superscript is of max
length M:

Su@) = LS*W), S*W),....SM W)

—  where S*(y) denotes all the signature terms of order k, e.g.

ST = SMLSW....SMP)
S2) =SS, SMPP)

Geometric and financial interpretation :

- the geometric interpretation of the first order is the increment of the path along each dimension. In financial terms, this corresponds to
the drift.

- the second order terms correspond to the Levy area or the surface covered between the chord connecting the first and last
coordinate in each dimension and the actual path, corresponding to a measure of volatility of the path.

- These two global features are captured by the first two orders, while more fine-grained, /ocal features are captured by higher-order
terms, as becomes apparent when looking at the factorial decay of S

GHENT
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SIGNATURE-BASED MMD LOSS

— Factorial decay: signatures are graded summaries of paths.

_ Terry Lyons shows that for paths of bounded variation (y: [0, T] — RY is of bounded variation if all changes
Yilve,,, — vt;| @are bounded (finite) for all partitions 0 < t, < t; <...<T), the following norm can be imposed on the

signature terms (with 1 < iy,...,i,, < D):

1
il
n!

II] j dyirdyte...dy™|| <

with

VI = sup > e, = ¥el
tic[0,T] :

where we take the supremum over all partitions of [0, T].

— This theorem guarantees that higher-order terms of the signature have factorial decay, i.e. that the order of
signatures imply a graded summary of the path, first describing global and increasingly more local characteristics of
the path. This implies that the truncated signature for increasing orders throws away less and less information,

similar to the low-rank approximation in PCA.

GHENT
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SIGNATURE-BASED MMD LOSS

— Signature as moment generating function in the path space: sequential random variables

— For stochastic processes that generate vector-valued data, there are well-known statistical tests for determining whether two samples
are generated by the same stochastic process, such as the sequence of (normalised) moments and the Fourier transform (complex
moments). As discussed, the MMD allows to compare these moments by embedding two random variables in Hilbert space using
kernel approximation.

—  For path-valued data, Chevyrev and Oberhauser introduce an analogue to normalised moments using the signature. They prove
that for suitable normalizations A, the sequence

EACO™ | dXO™ e

— determines the law of X uniquely. They argue that the moments in the path space up to order m are preserved (i.e. a bijective
property) for the truncated signature up to order m.

— Signature as optimal feature map ¢(.) for embedding paths:
The reasons are twofold:
(1) universality, which implies that non-linear functions of the data are approximated by linear functionals in feature space and
(2) characteristicness, which is exactly their merit, i.e. that the expected value of the feature map characterizes the law of the random

_~ Variable.
I
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SIGNATURE-BASED MMD LOSS

Signature kernel: In essence, it is just the inner product between the two signature vectors of two random variables in the path space.

Let x and y be two paths supported on [0,T], x: [0,T] » RP and y:[0,T] —» RP. The signature kernel k: [0, T]x[0,T] — R is defined as
ks(x,y) = (S(x),S(¥))

Intuitively, say for S truncated at order 1, k¢ measures the similarity between the drifts of the two paths. Truncated at order 2, k¢ looks
at drift and volatility similarity, and so and so forth.

Signature MMD: MMD can be used as a deterministic loss function in a generative model as it is a distance measure between two
random variables, for instance the fake generated data and the true input data. When the path structure of the random variable is
crucial, the choice of traditional kernels is inappropriate and we should use a sequential kernel. As described above, this is exactly

what signatures allow us to do. Let us first generalize the MMD expression to:

MMD (u,v) = subsesEx-ulf ()] = Ex[f (X)](19)
Hence, MMD is literally the maximum expected distance between two functions in the embedded space H . We can further rewrite:

MMDg(p,v) = Exyr,[ks(X, X")] = 2Ex~py~ulks(X, V)] + Eyyr, [ks (Y, Y1)
The signature MMD. The expression in itself is easy to compute, but its computational performance hinges on how efficiently we can

T evaluate ks.
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SIGNATURE-BASED MMD LOSS

PDE kernel trick: a recent result concerns a kernel trick for sequential kernels, the signature partial differential
equation (PDE) kernel trick. Salvi et al. 2021 proved that the signature kernel can be written as the solution of a
hyperbolic PDE belonging to the family of so-called Goursat problems. This substantially speeds up the evaluation
of k¢ and allows for GPU-optimized parallelization of the PDE solver. Formally, we can write:

5%k

S ¢ -
5551 = KO V(s

where ks(X(0),.) = kg(.,Y(0)) = 1 and X(s) = fl—f li=s and Y (j) = % |¢=j, which is a Goursat PDE. They further show

that this PDE can be written as a function of a static kernel k, e.g. the RBF or Matern kernel:
52

555; = (k(X(5), Y()) —x(X(s — 1), X()) —k(X(s), Y — D)) + 1(X(s), Y — 1))ks

After an appropriate choice of k, equation can then be solved using state-of-the-art PDE solvers and efficiently
parallelized over GPU. This allows for an efficient evaluation of kg in MM Ds.
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PROPERTIES: SIGNATURE UNIVERSALITY AND
DRAWDOWN

Universality. Non-linear continuous functions of the unparameterized data streams are
universally approximated by linear functionals in the signature space.

Theorem (Lyons, Ni). Denote by S the function that maps a path X from K to its signature S(X).
Let f: K — R be any continuous function. Then, for any € > 0, there exists M > 0, and a linear

functional L acting on the truncated signature of degree M such that

sup|f(X) = (L, Sy (X)) <€
X€eK
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UNIVERSITY 37



PROPERTIES: SIGNATURE UNIVERSALITY AND
DRAWDOWN

— E.g.f(P) = fOT (ngi((Pti) — P,)dt, or the expected drawdown of prices P over T, is non-linear

due to the max operation.
— S0, linear regression of examples true f(P) on P, makes little sense:

Drawdown - True vs. Fitted using LinReg on PATHS, R2: 0.5437, RMSE: 0.0141
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PROPERTIES 2/2: SIGNATURE UNIVERSALITY AND
DRAWDOWN

However, universality assures that f(X) can be € —approximated arbitrarily well (depended on
the estimation of L and truncation level M), i.e. drawdown as a linear combination of signature

terms.
— Forinstance, linear regression (= L from OLS) of f(P) on S(P), M=10, yields:

NATU LinReg, R2:

A
me\/w .o WM
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PROPERTIES 2/2: SIGNATURE UNIVERSALITY AND
DRAWDOWN

— Drawdown as a linear combination of signature terms: based on pre-trained L (linear
combination) the drawdowns of 2 samples (e.g. fake/real) can easily be evaluated by their
signatures as well, without requiring max-operators (e.g. within the system of differentiable
equations of our generative model)!!
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=
__IIIIIII } FACULTY OF ECONOMICS ANC
GHENT w BUSINESS ADMINISTRATION

UNIVERSITY 40



GENERATIVE ML ARCHITECTURES

— Generative Adversarial Networks (GAN)

— Generative Moment Matching Networks (GMMN)

— Variational Autoencoders (VAE)

— Restricted Boltzmann Machines (RBM)

— Flow-Based Models / Normalizing Flows (NF)

GHENT
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GAN

— Arguably the most popular architecture in generative ML, with well-known
applications in computer vision (deepfake etc).

— Trained by a adversarial game between two networks, a decoder network
(previously fe‘l(Z)) and a discriminator network.

— Samples a latent variable z from a simple prior distribution IP(Z), e.g. Gaussian
or Uniform, followed by a decoder network, the transform G (z), called the

Generator.

— The Discriminator D(.) outputs a probability of a given sample coming from
the real data distribution. Its task is to distinguish samples from the real
distribution P(X) from G (2).

— The decoder tries to produce samples as close to the original distribution
possible, as to fool the discriminator. GAN: Adversarial | x
—  This gives rise to the following well-known minimax problem: raining

Generator

Glz)

minmaxExp(o[10g(D ()] + E,-p(p[log (1 = D(G(2)]

— G D
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GMMN

—  Simple forward pass through a multi-layer NN from a uniform prior.

— MMD loss (also called MDD networks)

— Traditionally with Gaussian kernel, where it can be proven that it is a
discrepancy measure between all the moments of the generated fake versus
the true data distribution.

uoinesaudn ajdwes

—  More performant in combination with an autoencoder architecture.

‘

GMMN

Uniform Prior

\ 4

RelU

v

RelLU

\ 4

RelU

(a) GMMN MNIST samples (b) GMMN TFED samples

(c) GMMN+AE MNIST samples
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VAE

— Introduced by Kingma and Welling in 2014 (‘Variational inference using Bayes’),
and second most popular architecture (after GAN) in generative ML, with
applications to market generators in Buehler 2020, Fung 2021, and Bergeron
2021.

=
o,

<

@ O

— Autoencoder: fu(X) and fg(Z) are both neural networks, here respectively > %ﬁ .g‘vz’.ﬁ?:(‘ "
149 YA
called the encoder and decoder network. “ 4 /)‘\.g,{‘}‘
0

— Characterized by their joint distribution over the latent variables Z and the
observed variables X: P(x,z)=P(x|z)P(z)

— Kingma 2014 approximates the posterior function IP(z|x) using an encoder
model fg(X). Two contributions are key in appraising their work.

O

S I sy ap E} .
(1) They derive a lower bound for Pg(X) by comparing this posterior with L TG b ©
samples from an actual Gaussian using the Kullback-Leibler divergence 6{ ‘ 0} / ‘TL‘ é ‘; é
log(P(x)) = Efgx)llog(P(x|2))] — KL(fo(x)||P(2)) 2 A '&1,@ ‘W ' Y; 2
where maximizing the right-hand side (the Evidence Lower Bound o P ‘: Q ’ .
(ELBO)) corresponds to maximizing the loglikelihood of the data JA <
distribution as a function of ©. fos ‘
(2) They use a mathematical trick called the reparametrization trick that ‘
allows for backpropagation (see below) over the latent space Z.
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RBM

— Energy-based models dating back to Harmonium in 1980s (Smolensky 1986)

— Bipartite graphs (two-layer neural networks), with one visible layer v that
represents P(X) and one hidden layer h representing P(Z).

— Restricted refers to the fact that there are no connections or model weights 6
between nodes within each layer, only across the two layers.

— Each node in the graph represents a binary stochastic variable
— Boltzmann refers to the Boltzmann energy function that measures the

likelihood of the states of the graph (which in statistical physics is called a
Markov Random Field) by its joint distribution:

P(v,h) = % exp(—E (v, h))

m m n
E(U, h) = —z a;v; — 2 b]hJ — Z 2 Wi’jvihj
=1 j=1 =1 j=1

where v; and h; denote the individual nodes or state variables in resp. v and h.

In this case v; and h; are stochastic binary, hence Bernouilli, variables, but this

can be approximated with Gaussian-Bernouilli variables for continuous
distributions such as financial returns.
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— The goal of training this network is maximizing its joint likelihood, which

— The goal of training this network is maximizing its joint likelihood, which corresponds to minimizing the energy of the graph's state:
Corresponds tO m|n|m|Z|ng the energy Of the graph'S State: —  Through Markov Chain Monte Carlo (MCMC) sampling techniques such as

Gibbs sampling and improved alterations of it such as contrastive
divergence, it can be shown that the energy decreases as Pg(X), the
distribution of the visible layer with parameters ®, approaches the true P(X), or

—  Through Markov Chain Monte Carlo (MCMC) sampling techniques such as fne distribufion of fhe data.
Gibbs sampling and improved alterations of it such as contrastive T Tori with il o oo, v camples of BOry 0S8 I v and back
divergence, it can be shown that the energy decreases as Pg(X), the _  This was the approach in the original Market Generator paper by Kondratyev

and Schwarz 2019. The impressive results were confirmed by Lezmi 2020.

distribution of the visible layer with parameters ©, approaches the true P(X), or
the distribution of the data.

— Once training has converged, one can iteratively sample noise in v and back
and forth with h until we have new samples of P(X").

- d@

— This was the approach in the original Market Generator paper by Kondratyev
and Schwarz 2019. The impressive results were confirmed by Lezmi 2020.
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NORMALIZING FLOWS

— Flow-based generative models or normalizing flows (NF) is a class of neural networks
which use differentiable mappings to approximate simple bijective functions called
diffeomorphisms. These transform a simple distribution Z to a complex one, step by step.

— In our notation fg'(Z) would be a neural network that stacks these diffeomorphisms (such
as linear neural splines, for a recent overview see Kobyzev, 2020) as to approximate a
divergence measure between the target distribution P(X) and the sampled distribution
Pg(X).

— For instance, Wiese 2021 uses NFs to approximate (i.e. using gradient descent) the
Monte Carlo-approximated KL-divergence:

VoKL(P(X)||Pe(X")) = —Ex-pux)(Voln(Pe(X')))

1 n
~ =% Vo(in(ldet] g (fo(ia))l) — P (fo(x:))
=1

where J represents the Jacobian of the neural network fg*, the matrix of first order
derivatives of the network to the latent space values. The determinant of the Jacobian
thus plays a crucial role in approximating the KL using MC. For the computation of the
determinant to be efficient, the computation of the determinant of the individual
diffeomorphisms is typically chosen simple (e.g. linear splines). Making them sufficiently

ﬁ simple but expressive enough is a key element of research in NFs.
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DETAILED LOOK: CVAE

— VAE: (+) converges fast, generally more stable and gives us intepretable posteriors after training, (-) less flexible than GAN

— Let us have a deeper look at the architecture

Data input space P(X) Encoder

N
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Latent space P(Z2)

Reparametrization Trick

Decoder

Data output space Pg(X")
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DETAILED LOOK: CVAE

Architecture

— As input we have the D-dimensional ambient space X or the physical data

domain that we can measure (e.g. R or £)
Data input space P(X) Encoder Latent space P(7) Decoder Data output space Po(X')

— Using a flexible neural network mapping fg: R? - RX, K << N, called the
encoder, we compress the dimension of the data into a K-dimensional /atent ]

Reparametrization Trick

space Z, e.g. 10-dimensional.

— Using the reparametrization trick we map Z onto a mean u and standard X = flX) = 7 Lo s X
deviation o vector, i.e. onto a K-dimensional Gaussian, e.g. a 10-dimensional Z N 1z
normal distribution. | 0

—  The decoder neural network f5*: R - RP maps the latent space back to the

output space Pg(X") where X' can be considered reconstructed samples in
the training step, or genuinely new or fake samples in a generator step. o

—  The quality of the VAE clearly depends on the similarity between P(X) and
Pe(X")

GHENT
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DETAILED LOOK: CVAE

— Let us now zoom in on fg(X) and f5*(Z). Each neural network consist of one layer of J mathematical units
called neurons:

D
fo,:= A(z 0;xi)

— Every neuron takes linear combinations 6; of the input data point x; and is then activated using a non-linear
activation function A, such as rectified linear units (ReLU), hyperbolic tangent (tanh) or sigmoid. In this paper
we use a variant of RelLU called a leaky RelLU.

LReLU(x) = 1,9ax + 1,59x

where «a is a small constant called the slope of the RelLU.

GHENT
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DETAILED LOOK: CVAE

All neurons J are linearly combined into the next layer (in this case Z):

Ji
Zy:= Z Ojxfo;
J

for every k in K.
The decoder map can formally be written exactly like the encoder, but in reverse order.

The loss function of a VAE generally consists of two components, the latent loss (£;) and the reconstruction loss (Lp):
LX,X') =BL,+ (1 —B)Lg

The latent loss is the Kullback-Leibler discrepancy between the latent distribution under its encoded parametrization, the posterior

fo(X) = Pg(Z|X), and its theoretical distribution, e.g. multi-variate Gaussian P(Z). Appendix B in Kingma 2014 offers a simple expression
for L;. The reconstruction loss is the cost of reproducing Pg(X") after the dimension reduction step, and originally computed by the root of
the mean squared error (RMSE or L2-loss) between X and X..

K
1
LX) =5 (1+0— 12— exp(@) + (1= HECIIX = X'|1)
K
The parameter f can be tuned to get so-called disentangled latent representations in the -VAE architecture
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DETAILED LOOK: CVAE

Training process

=

Optimal loss values L™ are determined by stochastically sampling batches of data and alternating
forward and backward passes through the VAE.

For each batch the data is first passed through the encoder network and decoder network (forward
pass), after which L is evaluated in terms of 0. At each layer, the derivative of L vis-a-vis 0 can easily
be evaluated.

Next (the backward pass), we say the calculated loss backpropagates through the network, and © are
adjusted in the direction of the gradient VgL with the learning rate as step size.

The exact optimizer algorithm we used for this is Adam (Adaptive moments estimation)

Finally, we can also use a concept called regularization, which penalizes neural models that become
too complex or overparametrized. We used a tool called dropout, that during training randomly sets a
proportion of parameters in ® equal to zero, and leaves those connections at zero that contribute the
least to the prediction.
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DETAILED LOOK: CVAE

— In summary, the hyperparameters of this architecture are:

(1) the number of neurons in the encoder,
(2) the number of neurons in the decoder,
(3) the number of latent dimensions K,

(4) the learning rate,
(5) the optimizer algorithm and
(6) the dropout rate.

We opted for the following set-up (which was optimized using Grid Search): 100, 100, 10, 0.001, Adam, 0.0.

— After training, in the sampling or generation step, we start from a random K-dimensional noise € ~ P(Z)
which is K-variate Gaussian. Now, we only need a decode step to generate new samples of Pg(X’)

GHENT
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DETAILED LOOK: CVAE

— The importance of conditional factors: e.g. Instrumented PCA (IPCA)

— Py(X') vs. Py(X'|C) => Conditional VAE (CVAE)

GHENT
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CONDITIONAL SAMPLING
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Table 3: Macro-economic conditions

Table 3 — continued from previous page

[ ID FRED ID FRED Cat. | Detailed Cat. Indicator [ ID FRED ID FRED Cat. | Detailed Cat. Indicator
0 TREAST Finance Monetary Data US Treasuries Held by the Fed 52 VIXCLS Financial Data Volatility Indexes CBOE Volatility Index
1 MBST Finance Monetary Data Mortgage Backed Sec Held by the 53 GDP GDP & Components GDP/GNP US Gross Domestic Product
Fed 54 GNP GDP & Components GDP/GNP US Gross National Product
2 WALCL Banking Monetary Factors All Fed Reserve Banks - Total As- 55 NETFI GDP & Components Imports & Exports US Current Account Balance
sets 56 EXPGS GDP & Components Imports & Exports US Exports Goods & Services
3 TLAACBWO027SBOG Banking Monetary Factors All Commercial Banks - Total As- 57 IMPGS GDP & Components Imports & Exports US Imports Goods & Services
sets 58 DGI GDP & Components Govt Accounting Fed Govt: Defense Budget
4 BOPBCA Banking Conditions Number of US Banks 59 FGRECPT GDP & Components Govt Accounting Fed Govt: Tax Receipts
5 USNUM Banking Conditions Number of US Commercial Banks 60 TGDEF GDP & Components Govt Accounting Fed Govt: Budget Deficit
6 EQTA Banking Conditions Equity/Asset Ratio 61 cP GDP & Components Industry Corporate Profits After Tax
T TOTBKCR Banking Commercial Credit Bank Credit of All Commercial 62 DIVIDEND GDP & Components Industry Corporate Dividends
Banks 63 GDP & Components Personal Personal Income
8 TOTALSEC Banking Commercial Credit Securitized Total Consumer Loans 64 PSAVE GDP & Components Savings & Inv. Personal Savings
9 TOTALSL Banking Commercial Credit Total Consumer Credit Outstand- 65 PSAVERT GDP & Components Savings & Inv. Personal Savings Rate
ing 66 MORTGAGE30US Interest Rates 30yr Mortgage 30-yr Conventional Mortgage Rate
10 INVEST Banking Investment Total Investments All Commercial 67 DPCREDIT Interest Rates FRB Rates Discount Rate
Banks 68 FEDFUNDS Interest Rates FRB Rates Effective Federal Funds Rate
11 USGSEC Banking Investment US Gov’t Securities at All Com. 69 GRCPROINDMISMEI International Data Indicators Production of Total Industry in
Banks Greece
12 CONSUMER Banking Loans Total Consumer Loans 70 GRCSARTMISMEI International Data Indicators Total Retail Trade in Greece
13 BUSLOANS Banking Loans Total Commercial/Industrial Loans 71 GRCURHARMMDSMEI International Data Indicators Unemployment Rate - Greece
14 DALLCACBEP Banking Delinquencies Delinquencies On All Loans And 72 M1 Monetary Aggregates M1 M1 Money Supply
Leases 73 M2 Monetary Aggregates M2 M2 Money Supply
15 T10Y2Y Banking Interest Rates US 10-YR / 2-YR Spread 74 MZM Monetary Aggregates MZM MZM Money Supply
16 TB3MS Banking Interest Rates 3-Month T-Bill: Secondary Market 75 M1V Monetary Aggregates M1 Velocity of M1 Money Stock
Rate 76 M2v Monetary Aggregates M2 Velocity of M2 Money Stock
17 DGS10 Banking Interest Rates 10-Yr Treasury Const. Maturity 77 MZMV Monetary Aggregates MZM Velocity of MZM Money Stock
Rate 78 MULT Monetary Aggregates M1 M1 Money Multiplier
18 GFDEBTN Business/Fiscal Federal Government Federal Government Debt (Public) 79 PPIACO Producer Prices PPI Producer Price Index: All Com-
19 FYOINT Business/Fiscal Federal Government Interest on National Debt modities
20 FYONET Business/Fiscal Federal Government Federal Spending 80 IMPCH Trade Imports Imports from China
21 FYFR Business/Fiscal Federal Government Federal Receipts 81 IMPJP Trade Imports Imports from Japan
22 FYFSD Business/Fiscal Federal Government Budget Deficit/Surplus 82 IMPMX Trade Imports Imports from Mexico
23 CDSP Business/Fiscal Household Sector Consumer Debt/Income Ratio 83 IMPCA Trade Imports Imports from Canada
24 PERMIT Business/Fiscal Household Sector New Home Permits 84 IMPGE Trade Imports Imports from Germany
25 HSNIF Business/Fiscal Household Sector New Home Sales 85 IMPUK Trade Imports Imports from UK
26 CMDEBT Business/Fiscal Household Sector Outstanding Mortgage Debt 86 EXPCH Trade Exports Exports to China
27 DGORDER Business/Fiscal Ind. Production Manufacturers’ New Orders 87 EXPJP Trade Exports Exports to Japan
28 TCU Business/Fiscal Ind. Production Capacity Utilization: Total Indus- 88 EXPMX Trade Exports Exports to Mexico
try 89 EXPCA Trade Exports Exports to Canada
29 TTLCONS Business/Fiscal Construction Total Construction Spending 90 EXPGE Trade Exports Exports to Germany
30 BUSINV Business/Fiscal Other Total Business Inventories 91 EXPUK Trade Exports Exports to UK
31 ALTSALES Business/Fiscal Other Light Weight Vehicle Sales 92 BOPGEXP Trade Exports Exports: Goods
32 UMCSENT Business/Fiscal Other Univ of Michigan: Consumer Senti- 93 BOPGIMP Trade Imports Imports: Goods
ment 94 BOPGTB Trade Balance Balance: Goods
33 STLFSI Business/Fiscal Other St. Louis Financial Stress Index 95 EXPGS Trade Exports Exports: Scrvéccs
34 OILPRICE Business/Fiscal Other Spot Oil Price - West Texas Inter- 96 BOPSIMP Trade Imports Imports: Services
mediate 97 BOPSTB Trade Balance Balance: Services
35 CPIAUCSL Consumer Prices CPI Consumer Price Index: Seasonally o8 BOPGSTB Trade Balance Balance: Goods & Services
Adj.
36 UNRATE Empl & Population Household Survey Civilian Total Unemployment Rate
37 UEMP270V Empl & Population Household Survey Long Term Unemployment: 27
WKS
38 UEMPMED Empl & Population Household Survey Length of Unemployment
39 CE160V Empl & Population Household Survey Total US Workforce
40 EMRATIO Empl & Population Household Survey US Employment/Population Ratio
41 POP Empl & Population Population US Population
42 AHEMAN Empl & Population Est. Survey Avg Hourly Earnings: Manufactur-
ing
43 AWHMAN Empl & Population Est. Survey Avg Weekly Hours: Manufacturing
44 AWOTMAN Empl & Population Est. Survey Avg Weekly OT Hours: Manufac-
turing
45 DEXUSUK Exchange Rates Daily Rates USD/GBP  Currency Exchange
Rate
46 DEXUSEU Exchange Rates Daily Rates USD/EUR  Currency Exchange
Rate
47 DEXJPUS Exchange Rates Daily Rates JPN/USD Currency Exchange Rate
48 DEXMXUS Exchange Rates Daily Rates MXP/USD Currency Exchange
Rate
49 DEXCAUS Exchange Rates Daily Rates CAD/USD Currency Exchange
Rate
50 DEXCHUS Exchange Rates Daily Rates CNY/USD Currency Exchange
Rate
51 COMPOUT Financial Data Monetary Commercial Paper Outstanding

Continued on next page |
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CONDITIONAL SAMPLING

— Conditions = financial-economic priors

—  Selected using LASSO a subset of
macro conditions based on historical
impact on total market drawdown

(Wilshire)
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Figure 5: The evolution of £ of US Stock market index (Wilshire, left), the LASSO coef-
ficients of the conditions (right)

Largest positive contributors to £

Largest negative contributors to £

CBOE Volatility Index 0,815680
Avg Weekly OT Hours: Manufacturing 0,129751
Exports to Mexico 0,126585

Univ. of Michigan: Consumer Sentiment 0,079161

St. Louis Financial Stress Index 0,072814
CNY /USD Currency Exchange Rate 0,068154
CAD/USD Currency Exchange Rate 0,053743
Imports from UK 0,038683
30-yr Conventional Mortgage Rate 0,037272
Effective Federal Funds Rate 0,029571

US Gov’t Securities at All Com. Banks -0,142223

Long Term Unemployment: 27 WKS -0,043401
JPN/USD Currency Exchange Rate -0,029723
Avg Hourly Earnings: Manufacturing -0,001523

Table 2: Lasso coefficients of C; to &

56



CONDITIONAL SAMPLING

— Impact of conditions on paths High CBOE VIX (blue) vs. Low (red)
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CONDITIONAL SAMPLING

— Impact of conditions on paths High Consumer Sentiment (blue) vs. Low (red)
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CONDITIONAL SAMPLING

— Recap (hopefully makes more sense now):

— Goal != better prediction
— Goal = better simulation (-> complexity science)

In other words:

Coming up with scenarios that might be obvious for the data, but not for the human/modeller !

— Goal 2 = better understanding of sensitivities of optimal portfolios to these conditions (see next slides)
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CONDITIONAL SAMPLING

— The aim is to introduce appropriate C to our generative model, such that we can evaluate P(X'|C) at the
current level of C as well as for our own scenarios of C.

— For instance, given the current level of volatility, what do drawdown paths and the optimal portfolio look like,
and which positions are most affected if one gradually increases the volatility to levels seen during the GFC or
the Covid-19-induced March 2020 meltdown?

— What does one's portfolio look like with current market sentiment, and which positions are likely to be first and
mostly affected when sentiment turns sour gradually?
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CONDITIONAL SAMPLING

Shapley (SHAP) values:

----- ond}’
as a linear combination wy, for d € D, where the weights reflect some contribution (of

risk, return, drawdown) to the optimal portfolio timeseries w*R or w*Il.

Given a set of N, condition sets C = (Ck)k={1,...,Ns}’ each set corresponding to a C that
generates sequences R or I1, each C will also correspond to a unique optimal
portfolio, i.e. for each k. Now we can see the w; as the output, and evaluate the

contribution of each condition C; in C* to the optimal portfolio. The SHAP values to
each w; can then formally be defined as

SI'(Ns— |S| - D! . _ .
P;(wg) = z I Nl, [~ 1) (wa(S U {i}) —wgu(5)))
ScNs\(i}] >

This is the SHAP @, for condition i in C in terms of optimal weight w;. Intuitively, for
the N, optimal portfolios we evaluate all the subsets S where condition i did not
contribute to the optimal portfolio w;(S) and compare with the optimal portfolios
where it was w;(S U {i}). The average contribution of this condition to the optimal
weight thus constitutes the SHAP value. This allows for visualizations of the
conditional optimal portfolios, such as waterfall and beeswarm plots, that are popular
explainable machine learning tools for applications in deep learning and computer
vision.
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an optimal portfolio can be seen
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4 other features

model output
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CONDITIONAL SAMPLING: DOW 30 EXAMPLE
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Impact of VIX on optimal DOW portfolio (simple conditional bootstrap)
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CONDITIONAL SAMPLING: DOW 30 EXAMPLE

Impact of VIX on optimal DOW portfolio (simple conditional bootstrap)
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CONDITIONAL SAMPLING: DOW

Impact of VIX on optimal DOW portfolio (simple conditional bootstrap)
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NEXT STEPS

— Low-hanging fruit (first on the agenda):

— Code:

— 3 open merge requests (MRs) on Gitlab:
—  Variational Autoencoder Architecture implementation (on R for now, ELBO loss)
—  General Condition object implementation
—  Conditional Weighted Bootstrap (benchmark) implementation

— Proposed next MRs:
—  Sig-MMD (first try)
—  GMMN (Sig-MMD)
—  Quant-GAN (as computational benchmark)

— Bigger questions / conceptual:

— Input representation: Further develop input repr for Xi; and link with portfolio paths Pi (inverse transform?)

— Loss function: Sig-MMD for drawdown process moment matching
— Conditions: Develop macro backdrop to train conditional architecture; connect with macro econ collaborator / work with thesis

students?
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DARE
TO THINK

Emiel Lemahieu

Quantitative Researcher
B emiel.lemahieu@investsuite.com
m www.linkedin.com/in/emiel-lemahieu
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