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Abstract

This paper investigates the use of generative machine learning for portfolio
construction, by learning drawdown distributions under P and then minimiz-
ing expected portfolio drawdown risk. We introduce a method for matching
the drawdown moments in the path space, based on recently introduced
signature-based maximum mean discrepancy measures. This allows us to
translate geometric and economic priors on the underlying drawdown dis-
tribution into new sample paths, without requiring an a priori specification
of the underlying drawdown generating process. This process stays implicit
in the parameters of our machine learning model, more specifically a condi-
tional variational autoencoder model. On a numerical example for US ETFs,
we illustrate the use of data-driven scenario-based portfolio construction for
better apprehending optimal portfolios and their sensitivities to market con-
ditions.

Keywords: Portfolio Construction, Machine Learning, Geometric Learning,
Signatures, Maximum Mean Discrepancy, Economic Priors

1. Introduction

The application of data-driven or machine learning methods to financial
problems such as asset pricing [1][2][3], optimal trade execution [4][5][6] and
risk and portfolio management [7][8][9][10][11] has seen a proliferation in the
literature over the last years. One way to broadly separate these techniques
into two distinct classes of models is to distinguish between so-called gener-
ative and discriminative modeling. In this introduction, we will first explain
this difference and make the link between generative models in machine learn-
ing and traditional generative models in finance. Next, we will delve into the



difference between generating return versus drawdown sequences. To end
this introduction, we introduce the portfolio drawdown optimization prob-
lem. The remainder of this paper is then structured as follows. In Section
2 we briefly list the main contributions of this work. In Section 3, we give
a brief overview of the existing literature on market generators. Section 4
covers the methodological building blocks of our portfolio optimizer, namely
the signature kernel-based MMD measure, the CVAE and the explainable
machine learning (XML) component of our framework. Section 4 discusses
the numerical results on a universe of US ETFs. Section 5 concludes.

1.1. Generative modeling in machine learning

Machine learning (ML) models can broadly be separated into two classes
of models:

• Discriminative modeling: These models revolve around the con-
ditional distribution P(Y|X), and learn a set of parameters Θ from
the data to predict labels Y given a distribution of features X. For-
mally, given some Y : RM , X : RN , with N typically large, we learn
a set of parameters Θ using a flexible mapping f (e.g. a neural net-
work): fΘ(X) : RN −→ RM such that some loss measure L(Y, fΘ(X)) is
minimized. Examples include simple regularized regressions (LASSO,
Ridge, Elastic nets [12]), support vector machines and neural network
regressors [13].

• Generative modeling: These models revolve around the uncondi-
tional distribution P(X), and learn a set of parameters Θ that cap-
ture the structure or symmetries in the high-dimensional distribution
P(X). The aim is generally to compress the data in much fewer di-
mensions, while preserving the most important features of the origi-
nal data. Formally, given some X : RN , with N typically large, we
learn a set of parameters Θ, again using a flexible mapping f, but
now on some space Z : RK , with K << N , called a representation,
fΘ(X) : RN −→ RK : X −→ Z. The goal of such a representation is that
the mapping f−1

Θ (Z) : RK −→ RN : Z −→ X ′ can be used for sampling
new samples X ′ such that X and X ′ are not distinguishable statisti-
cally, i.e. according to some loss metric L(X,X ′). Z, the latent space,
is sampled from some simple source distribution, e.g. Z ∼ N(0, 1) or
Z ∼ U(0, 1). f−1

Θ (Z) can thus be seen as a mapping that translates a
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sample of noise into a sample that is indistinguishable from the origi-
nal data distribution, and thus generates an unlimited amount of new
samples X ′ ∼ PΘ(X). Popular ML pipelines here include variational
autoencoders [14] [15], generative adversarial networks [16], restricted
Boltzmann machines [17] [18], and normalizing flows [19].

While many of the above-cited papers on financial machine learning have
focused on better prediction with discriminative (deep) learning models, this
paper focuses on better simulation with the latter class of techniques. Here it
comes down to learning an optimal mapping between some high-dimensional
distribution of paths and some low-dimensional representation that allows us
to reconstruct paths that are indistinguishable from the original in terms of
some important features. One of the main arguments in this paper is that
these features are determined by the application at hand (geometric prior).

1.2. Generative modeling versus traditional Monte Carlo techniques

Finding an optimal mapping between a source distribution and the orig-
inal data P(X) is not new to finance. This has been a key area of research
in Monte Carlo simulation [20] and the development of bottom-up stochastic
processes. This has been instrumental in calibrating risk measures and opti-
mizing portfolios under the physical measure P, but crucial in constructing
derivative pricing tools under the risk-neutral measure Q. The core difference
with the machine learning approach, is that in a traditional Monte Carlo the
map f−1

Θ (X) has to be specified as some closed-form (system of) equation(s)
called the data generating process (DGP). Arguably the most well-known
process is the Black-Scholes equation [21] that describes the diffusion paths
of asset prices as geometric Brownian motions. In this example, Z ∼ N(0, 1)
and Θ is a tuple of the drift and volatilities (µ, σ) such that the corresponding
market generator becomes:

f−1
Θ (Z) : Xt = µ+ σϵt (1)

where Xt is the logreturn at t, Θ = (µ, σ), and ϵt is an instance of Z at t.
Remark that µ = r, the risk-free rate under Q. Another difference is that
such an a priori specified f−1

Θ (Z) does not require the estimation of fΘ(X)

and the evaluation of L(X, X̂), but rather relies on estimating Θ directly
using some form of loglikelihood maximization on historical data (called cal-
ibration). There are thousands of papers that focused on improving the spec-
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ification of the data generating process1, incorporating autocorrelated means
or mean-reversion properties, local and autoregressive stochastic volatilities,
long-memory or rough volatility, fat-tailed and infinite-variance processes,
copula correlation structures, and so and so forth. This has led to an increas-
ingly rich reproduction of statistical features or stylized facts (see Section 1.3
below) of financial paths, at the cost of increasingly complex formulations of
(1).

1.3. Drawdown versus return paths

A core concept in this paper is a path. It may appear as a trivial concept,
but it is highly non-trivial to define it in this context. In general, a path
γ in RD is a continuous map from some interval [a, b] to RD, written as
γ : [a, b] → RD. We use subscript γt = γ(t) to denote the time as parameter
t ∈ [a, b], and usually for convenience we take a = 0, b = T, t ∈ [0, T ]. In
our examples we will assume that paths are piecewise linear, smooth and
differentiable, i.e. the path has derivates of all orders over [0,T]2.

One path in D dimensions can be written as

γ : [0, T ] → RD, γ = {γ1, γ2, ..., γD} (2)

Traditionally, financial paths are tantamount to return sequences. Say
Si(t) is the price of a financial asset i, such as a stock, bond, an index
or exchange rate. Then as per above, we denote Xi(t,∆t) = ln(Si(t +
∆t))− ln(Si(t)) as the logreturn at t over the previous period ∆t, say daily.
corr(Xi(t+ τ,∆t), Xi(t,∆t)) is the linear autocorrelation function of Xi for
lag τ . Say we have a D-dimensional universe of financial instruments, then
for every instrument i we can define a return path r as:

ri : [0, T ] → R2, ri = {t, (Xi(0,∆t), Xi(1,∆t), Xi(T,∆t))} (3)

Where the path at the first dimension is the time evolution, and the path
at D = 2 is the evolution of returns over t. This is also called the time-
augmented path. Now let us call the (D+1)-dimensional path Rj

Rj : [0, T ] → RD+1, Rj = {t, r1, r2, ..., rD} (4)

1Some famous ones such as Heston [22], SABR [23] and rough vol [24].
2However, the same properties hold for general (rough) paths of bounded variation, see

[25].
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a return space. This is a focal object in quantitative finance. The drift of this
vector space in each of its components ri, µi, is the average return and often
modelled using factor decompositions of the space R. The similarity between
vectors ri is often assessed with correlation ρi, while its dispersion or risk is
mostly analyzed using the standard deviation across the coordinates σi.

From a portfolio construction perspective, the traditional aim (in mean-
variance frameworks [26]) is to find r∗ as a dotproduct of a D-dimensional
weight vector w∗ and R, such that w∗R as a single portfolio return path r∗

has maximal drift µ∗ over standard deviation σ∗ (or a maximal Sharpe ratio).
However, setting T to the historical sample (e.g. Nobs = 2500 by looking

back 10 years of daily data with approx. 250 trading days per year) only
yields one estimate of µi, ρi and σi, which gives us no statistical confidence
of that estimate or probabilities, nor is every observation in the total sample
as indicative for the current market regime. Therefore, T should be chosen
smaller than the number of observations Nobs, e.g. monthly sample paths
T = 20, such that the historical sample gives rise to Nsim = ⌊Nobs/T ⌋ non-
overlapping or Nsim = Nobservations−T overlapping return spaces called return
sequences R:

R = (R1, R2, ..., RNsim
) (5)

R can thus be seen as one return tensor with Nsim return spaces. Option-
ally, one can attach weights wj to each Rj to denote its importance in the
estimation of the statistics on R. Some common examples: (1) exponential
smoothing (EWMA) would attach exponentially decreasing wj to smaller j,
(2) conditional sampling would attach wj = 0 to sequences not satisfying
the historical conditions, and wj = 1 if they do, and (3) volatility-filtered
sampling would set wj =

σ
σj
.

Based on this set of return sequences R, stats for µi and σi (or ρi, pos-
sibly r∗) can be determined probabilistically, and expectations of stats can
be developed (e.g. based on conditional distributions). The estimation of
these parameters is exactly what we discussed in 1.2 in terms of calibrating
the parametric specification of the DGP. R could also be used outright3, or
sequences j could be resampled with replacement4, but this results in limited
unique samples, can give rise to (excess) duplicates and thus multicollinearity
in the optimization problem. With a generative model, in principle we can

3i.e. historical simulation
4i.e. a non-parametric (wj-weighted) block bootstrap with block size T
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create an unlimited amount of samples from noise.
When modeling return sequences, there is widespread knowledge and to a

certain extent consensus about the statistical features we want to reproduce
in R, known as the stylized facts of financial returns. This was surveyed
by Cont [27] and are most importantly: (1) the existence of fat tails in the
return distribution, (2) the absence of linear autocorrelation (cf. above),
(3) volatility clusters (large absolute returns are highly autocorrelated), and
(4) leverage effects (absolute returns and returns are negatively correlated).
Much of the work regarding stochastic DGPs discussed in 1.2 come down to
addressing these stylized facts.

Return paths are, partly due to the lack of linear autocorrelation, often
not considered as paths as formally described above, but viewed from their
return distribution right away. The return distribution, or in practice often
called the profit-and-loss (P&L), is essentially a static measure. Consider
it in our notation the density function of R when we flatten the tensor, i.e.
P(X) for all X in r for all scenarios Rj in R. Once ∆t is decided (e.g. daily),
we can shuffle the returns and maintain the same P&L. Estimates for µi,
σi and r∗ will remain the same, as well as popular risk conditionals on the
P&L distribution such as value-at-risk (VaR) and expected shortfall (ES).
Valuable information about the sequential structure, i.e. the path structure,
is lost.

Investors are also interested in the path characteristics of their risk, e.g.
the autocorrelation of their risk. They could correct for the scaling between
their VaR and ∆t using the monofractal scaling of volatility σi and essentially
generate a multi-scale P&L. However, a more intuitive approach is to, rather
than returns, model drawdown paths.

Again Si(t) denotes the price of our asset i. Then let us consider, in accor-
dance to [28], the absolute drawdown conditional xi(t,∆t) = maxtk<t (Si(tk))−
Si(t). This measure is a dynamic generalization of a deviation measure on
the path space [28]. Every instrument in our D-dimensional universe has a
drawdown series ξi defined as:

ξi : [0, T ] → R2, ξi = {t, (xi(0,∆t), xi(1,∆t), xi(T,∆t))} (6)

And the drawdown space can analogously be defined as:

Ξj : [0, T ] → RD+1,Ξj = {t, ξ1, ξ2, ..., ξD} (7)

Giving rise to drawdown sequences on a T < Nobs path space as per above:

Ξ = (Ξ1,Ξ2, ...,ΞNsim
) (8)
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Figure 1: Return paths (left) versus drawdown paths (right)

Figure 2: P(X) of returns (left) versus P(x) of drawdowns (right)

Figure 1 and 2 illustrates the difference between return and drawdown
paths, as well as P(X) and p(x).

As per above for returns, the treatment of Ξ in terms of wj and the choice
of Θ allows us to move from a single historical drawdown to a distribution of
(conditional) drawdowns and expected drawdown (optimization). However,
there are some major differences and related challenges:

• The drawdown path ξ itself has important path structure, i.e. the
maximum and average drawdown are determined by consecutive and
highly autocorrelated observations of xi(t). It is therefore important
to match the distribution of the Ξ, P(ξ) for all scenarios Ξj in Ξ and
not just the flattened P(x) for all x in ξ for scenarios Ξj in Ξ. In other
words, effective drawdown simulation hinges on the distribution in the
path space, not the flat x distribution, while for returns this is often
synonymous.

• Stochastic processes have not been developed for ξ-processes yet. There
are no off-the-shelf DGPs that seem to reflect the statistical reality
of ξ-processes. A fortiori, no stylized facts for ξ-processes have been
proposed or agreed on.
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This has important implications for portfolio drawdown optimization in gen-
eral, and the choice of Ξ and the generator Θ in particular: (1) since we
have to compare two distributions in the path space (i.e. sequential random
variables), we cannot use traditional distributional methods such as loglike-
lihood or discrepancy measures from information theory (such as KL or JS
divergences), (2) since no DGPs have been developed for ξ-processes, DGP-
free modeling of them leapfrogs that gap (given that the output paths are
sufficiently realistic).

1.4. Portfolio drawdown optimization

Now that we have defined drawdown sequences and the particular chal-
lenges posed in simulating paths that are loyal to the historical drawdown
structure, we can define our portfolio optimization problem.

Drawdown optimization is of particular interest to fund managers, as well
as pertinent to the recent boom in robo-advisors. It does not only better re-
flect risk as perceived by (retail) investors: both the size and frequency of
losses, as well as the time required to recoup them is taken into account. It’s
also conducive for maximizing customer retention, or to put it differently,
avoiding churn. Retail investors are particularly sensitive to losses and the
time to recover from them, and will unlikely tolerate large drawdowns or even
small drawdowns that persist for a long time. By a mouse click, or removing
an app, they can close down an account and go elsewhere. Therefore, draw-
down optimization (versus volatility or value-at-risk) also makes sense from
a retention point of view in this day of robo-advisory.

Recall that portfolio optimization revolves around finding an optimal vec-
tor of weights w∗ such that the portfolio timeseries w∗R has some desirable
properties, such as minimum volatility (standard deviation), maximum re-
turn (drift) or the optimal ratio between them. Remark now, that the path
space on which these weights/dotproducts apply does not necessarily have to
be returns. This could also be drawdown paths or the original price paths.

Given the above, the simplest drawdown optimization algorithm would
be to minimize:

minw Ej(ξ(w))
s.t. ξj = wΞj

wID = 1
(9)
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This optimization problem minimizes the portfolio holding-weighted average
drawdown of the instrument drawdown in the universe. However, this is not
the same as minimizing portfolio drawdown and leaves room for the opti-
mizer to game this difference such that we might end up with corresponding
portfolio drawdowns that are not optimal. Rather, we propose a refactoring
to portfolio values that reflects the portfolio drawdown as objective:

minw Ej(ξ(w))
s.t. ξj,t = mj,t − wΠj,t

mj,t ≥ mj,t−1

wID = 1
(10)

where Π is a space of asset price paths that has a correspondence to Ξj. We
will come back to this crucial point in Section 4. For now it becomes apparent
that the path structure of Π is critical because the explicit portfolio drawdown
optimization necessitates an optimization variable mt which reflects the local
maxima of the assets at t for scenario j. Generally, this is not preserved when
modeling R, but it is our crucial path feature in Ξ.

2. Contributions

The contributions of this paper are threefold:

• It explores the use of portfolio optimization with generative mod-
eling, which was not the focus in earlier studies (cf. Section 3) and,
because of the relevant path features for this application, necessitates
a new input data representation (e.g. Ξ versus R) compared to
generators introduced previously in literature.

• It introduces a loss metric in the generator’s architecture that fo-
cuses on learning structure (or non-linear common factors) in the down-
side/drawdown risk of the universe.

• Finally, it elaborates on the use of conditions or conditional distribu-
tions, to better match the non-stationary properties of financial time-
series as well as to better apprehend the sensitivities of the optimal
portfolio to market conditions.

9



3. Brief overview of market generator literature

Market generators are generative models with the specificity of modeling
financial markets, such as spot asset prices S, option prices and (implied)
volatilities, or order streams in limit order books. The topic has seen a recent
surge in interest as generative machine learning architectures (see Section
4.2.1) have found their way in simulation engines for optimal hedging, optimal
order execution, backtesting trading strategies, and many more. Table 1 gives
a brief overview and covers a non-exhaustive list of some of these market
generators, and their application. They are sorted first on architecture and
then on date. Remark that the literature on neural (and even generative)
architectures in finance is vast, and this table only focuses on models that
satisfy our definition of a market generator, and are thus closely related to
this research.

Paper Year Architecture Application
Henry-Labordere [29] 2019 GAN Option prices
Wiese et al. [30] 2019 GAN Hedging strategies
Cuchiero et al. [31] 2020 GAN Volatility models
Ni et al. [32] 2020 GAN Spot prices
Wiese et al. [33] 2020 GAN Spot prices
Li et al. [34] 2020 GAN Order book simulation
Storchan et al. [35] 2020 GAN Spot prices
Benedetti [36] 2020 GAN Yield models
Xu et al. [37] 2020 GAN Spot prices
Pardo and López [38] 2020 GAN Spot prices
Buehler et al. [39] 2021 GAN Hedging strategies
Ni et al. [40] 2021 GAN Spot prices
Pfenninger et al. [41] 2021 GAN Spot prices
Rosolia and Osterrieder [42] 2021 GAN Spot prices
Koshiyama et al. [43] 2021 GAN Spot prices
van Rhijn et al. [44] 2021 GAN Spot prices
Marti et al. [45] 2021 GAN Correlation matrices
Coyle et al. [46] 2021 GAN Spot prices
Wiese et al. [47] 2021 NF Spot and Option prices
Kondratyev and Schwarz [48] 2019 RBM Spot prices
Lezmi et al. [49] 2020 RBM / GAN Spot prices
Wang [50] 2021 RBM / VAE Spot prices
Buehler et al. [51] 2020 VAE Spot prices
Fung [52] 2021 VAE Option prices
Frandsen [53] 2021 VAE Hedging strategies
Bergeron et al. [54] 2021 VAE Volatility models
Ning et al. [55] 2021 VAE Volatility models

Table 1: Overview of the market generator literature

4. Methodologies

This section discusses the main methodologies used to produce the results
in Section 5. These include the signature-based MMD measure to match
drawdown moments in Section 4.1, the choice of generative modeling ar-
chitecture and details behind the CVAE in Section 4.2 and the explainable
machine learning methods in Section 4.3.
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4.1. Signature kernel

The signature kernel is a recent development in mathematics, and more
specifically stochastic analysis, with fruitful applications in machine learning.
It uses a transformation of the path space to the so-called signature space,
which resembles a graded summary of path5-structured data, while preserv-
ing important geometrical features of the path. They offer a mathematically
principled feature representation of paths, and have proven efficient tools in
machine learning applications such as recognition of handwritten Chinese
characters [56], classification and validation of bipolar and borderline disor-
ders [57], malware detection [58], detection of Alzheimer disease [59], human
action recognition [60], and many more. Applications in finance include mar-
ket simulation [51] and optimal trade execution [61]. Moreover, recent work
argues that they are provably optimal feature maps, being both universal
and unique [62]. We will introduce these concepts below, as much from the
ground up as possible while still focusing on the essence.

We start with a recap of kernels and their advantage in general. Then we
delve into the use of kernels for distance measures in machine learning. Next
we introduce signatures and the signature kernel, as well as its implications
for distances in the path space.

4.1.1. Kernel techniques

In general, kernels k are a class of functions of two random variables that
measure the similarity between the two random variables. For instance:

k(X, Y ) : [a, b]× [a, b] → R (11)

is a kernel since it maps two random variables X and Y with support on
[a, b] on a metric that is (commonly) small when X and Y are close to each
other, and vice versa. Common examples are radial basis functions (RBF)
such as the exponential kernel and Gaussian, Euclidean, Polynomial kernels,
and so and so forth. Being introduced very general here, they also span a
vast range of applications in machine learning (and beyond, see [63]): (1)
feature maps where kernels are essentially inner products between feature
vectors X (which allows for using linear methods in non-linear problems,
e.g. support vector machines), (2) basis functions for approximation spaces
(i.e. changing the basis of data to approximate functions by allowing more

5Possibly very high-dimensional paths, called streams.
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variation in regions with more data), and many more. Clearly the use case
will determine the choice of the appropriate kernel, and there is no panacea
kernel that outperforms on all of these use cases.

Although this explanation introduces kernels in the most general way
possible, we can already discuss their main advantage by introducing prop-
erty (13) and MMD in the next section. Positive definite kernels, such as the
Gaussian kernel, that satisfy

n∑
i=1

n∑
j=1

cicjk(xi, xj) ≥ 0 (12)

for any xi in X and any pair ci, cj ∈ R, also called Mercer kernels6 have the
property that there exists a mapping ϕ between X and Y and a space H
equipped with an inner product, such that the kernel value k(x, y) can be
rewritten as an inner product in H:

k(x, y) = ⟨ϕ(x), ϕ(y)⟩ (13)

Since H should only be equipped with an inner product it is a so-called
Hilbert space, and it reproduces the kernel by means of that inner product
of two mapped features ϕ(.). This is known as a reproducing kernel Hilbert
space (RKHS) in machine learning.

4.1.2. Max mean discrepancy

The maximum mean discrepancy (MMD) is a popular measure of distance
between two distributions in machine learning. Suppose we have two sets of
samples X and Y and we want to measure the distance between them. The
following MMD computes the mean squared difference of the statistics ϕ
between the two sets:

MMD = || 1
N

N∑
i=1

ϕ(xi)−
1

M

M∑
j=1

ϕ(yj)||2 (14)

6In reference to the British mathematician James Mercer and the Mercer theorem,
a central result for kernel approximation methods and kernel machines such as support
vector machines.
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This can consequently be rewritten as:

MMD =
1

N2

N∑
i=1

N∑
i′=1

ϕ(xi)ϕ(x
′
i)−

2

NM

N∑
i=1

M∑
j=1

ϕ(xi)ϕ(yi)+
1

M2

M∑
j=1

M∑
j′=1

ϕ(yi)ϕ(y
′
i)

(15)
Now for instance taking ϕ equal to be identity ϕ(x) = x, this gives rise to the
squared difference in means between X and Y, and other choices give rise to
higher order moments of X and Y.

Remark that in (15) the distance between X and Y are only written in
terms of the inner products between the mappings ϕ(.) of X and Y, which
means that we can propose a (positive definite) kernel such that:

MMD =
1

N2

N∑
i=1

N∑
i′=1

k(xi, x
′
i)−

2

NM

N∑
i=1

M∑
j=1

k(xi, yi) +
1

M2

M∑
j=1

M∑
j′=1

k(yi, y
′
i)

(16)
This summarizes the main purpose of kernels in this application, namely
that the distance between two samples in terms of a map ϕ can be evaluated
without having to actually compute all the mappings ϕ(.) of X and Y, which
can lead to dramatic improvements computationally. This famous result is
often referred to as the kernel trick.

The MMD will be zero if and only if P(X) = P(Y ), and distances in-
crease when the moments diverge more. For instance, using a Gaussian ker-
nel k(x, y) = exp (− 1

2σ
|x− y|2) with bandwith parameter σ [64] argues that

by means of a Taylor expansion it can be shown that minimizing MMD cor-
responds to minimizing a distance between all moments of X and Y. They
coined a generative model with this distance metric a generative moment
matching network.

For now let us conclude that kernel methods allow us to embed two ran-
dom variables X and Y in a space H that allow us to evaluate the distance
between the two variables, often computationally orders of magnitude less
expensive than evaluating a feature map ϕ(.) over the values of X and Y
and then evaluating the inner products of all ϕ. One key assumption for
now is that X and Y were simple random variables in R and not sequantial
variables, i.e. random variables in the path space RD

4.1.3. Signatures and the signature kernel

Let us now move to distances in the path space by means of the signature
transform and signature kernel. We already formally introduced a path γ in
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equation (2). Let us now recall path integrals. For a path γ : [0, T ] → R and
a function f : R → R, the path integral of γ against f is defined by∫ T

0

f(γt)dγt =

∫ T

0

f(γt)
dγt
dt

dt =

∫ T

0

f(γt)γ̇tdt (17)

in which context f is called a 1-form [65]. The last integral is the ’usual’
Riemann integral. Note that f itself is a real-valued path on [0, T ]. This is
a special case of the Riemann-Stieltjes integral of one path against another
[25]. In general, one can integrate any two paths on [0, T ], κ : [0, T ] → R, γ :
[0, T ] → R, against one another:∫ T

0

κtdγt =

∫ T

0

κtγ̇tdt (18)

Signature definition. Let us consider a particular path integral defined
for any single index i ∈ {1, 2, ..., D}:

S(γ)i0,T =

∫ T

0

dγi = γi
T − γi

0 (19)

which is the increment of the path along the dimension i in {1, 2, ..., D}. Now
for any pair of indexes i, j ∈ {1, 2, ..., D}, let us define:

S(γ)i,j0,T =

∫ T

0

∫ tj

0

dγidγj (20)

and likewise for triple indices in i, j, k ∈ {1, 2, ..., D}:

S(γ)i,j,k0,T =

∫ T

0

∫ tj

tk

∫ tk

0

dγidγjdγk (21)

and we can continue for the collection of indices i1, i2, ..., ik ∈ {1, 2, ..., D}:

S(γ)
i1,i2,...,ij ,...,ik
0,T =

∫ T

0

...

∫ tj+1

tj

...

∫ t2

t1

∫ t1

0

dγi1dγi2 ...dγik (22)

which we call the k-fold iterated integral of γ along {i1, i2, ..., ik}.
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Definition 4.1 (Signature). From [25]: The signature of a path γ : [0, T ] →
RD denoted S(γ)0,T is the collection (an infinite series) of all the iterated in-
tegrals of γ. Formally, S(γ)0,T is the sequence of real numbers

S(γ)0,T = (1, S(X)10,T , S(X)20,T , ..., S(X)D0,T , S(X)1,10,T , S(X)1,20,T , ...) (23)

where the zeroth term is 1 by convention and the superscript runs along the
set of multi-indices:

W = {(i1, i2, ..., ik)|k ≥ 1; i1, i2, ..., ik ∈ {1, 2, ..., D}} (24)

In other words, the signature is the collection of all the iterated integrals
consisting of all possible combinations of the indices in D (for any length of
combination, hence it is an infinite series). However, it is important to note
that these signatures are ordered along this length, which is called the order
or level of the signature.

We often consider theM -th level truncated signature, defined as the finite
collection of all terms where the superscript is of max length M:

SM(γ) = (1, S1(γ), S2(γ), ..., SM(γ)) (25)

where Sk(γ) denotes all the signature terms of order k, e.g.

S1(γ) = (S(γ)1, S(γ)2, ..., S(γ)D) (26)

S2(γ) = (S(γ)1,1, S(γ)1,2, ..., S(γ)D,D) (27)

Geometric and financial interpretation. As shown in (19), the geo-
metric interpretation of the first order is the increment of the path along
each dimension. In financial terms, this corresponds to the drift. It can be
shown that the second order terms correspond to the Levy area [25], or the
surface covered between the chord connecting the first and last coordinate in
each dimension and the actual path, corresponding to a measure of volatility
of the path. These two global features are captured by the first two orders,
while more fine-grained, local features are captured by higher-order terms,
as becomes apparent when looking at the factorial decay of S:

Factorial decay. One key property of signatures is factorial decay, which
makes it a graded summary of paths.

As an analogue to the distributional setting (cf. Section 1.3 consider-
ing from R P(X) and using factor decomposition) consider the well-known
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principal component analysis (PCA). In PCA we use linear combinations of
the data X to decompose it into its components that maximise their vari-
ance while being mutually orthogonal (uncorrelated). It is equivalent to the
eigendecomposition of the covariance matrix of X. A key feature that we
commonly see is exponential decay or rate decay, namely that the sorted ab-
solute values of the eigenvalues of the covariance matrix of X : RD decay fast
enough, i.e. the jth largest coefficient |β|j ≤ Aj−a, a ≥ 1/2,∀j and constants
a and A do not depend on the dimension D. The latter simply implies that
the first N components (N << D) already explain a vast part of the shared
variance in the data set.

Informally, this intuition can be applied to paths using signatures as well.
Lyons [66] shows that for paths of bounded variation7 the following similar
norm can be imposed on the signature terms (with 1 ≤ i1, ..., in ≤ D):

||
∫

...

∫
dγi1dγi2 ...dγin|| ≤ ||γn||1

n!
(28)

with
||γ||1 = sup

ti⊂[0,T ]

∑
i

|γti+1
− γti | (29)

where we take the supremum over all partitions of [0,T].
This theorem proven in [66] guarantees that higher-order terms of the

signature have factorial decay, i.e. that the order of signatures imply a graded
summary of the path, first describing global and increasingly more local
characteristics of the path. This implies that the truncated signature for
increasing orders throws away less and less information, similar to the low-
rank approximation in PCA.

Signature as path moment generating function. Another key result
that was recently developed by Chevyrev and Oberhauser [62] is that the
signature can be seen as the moment generating function in the path space.

As discussed above, in the distributional setting there are well-established
metrics to compare two distributions. In machine learning, we often en-
counter distributional distance metrics from information theory, such as the
Kullback-Leibler (KL) and Jensen-Shannon (JS) divergences between two

7γ : [0, T ] → R is of bounded variation if all changes
∑

i |γti+1
−γti | are bounded (finite)

for all partitions 0 ≤ t0 ≤ t1 ≤ ... ≤ T
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distributions. For stochastic processes that generate vector-valued data,
there are well-known statistical tests for determining whether two samples
are generated by the same stochastic process, such as the sequence of (nor-
malised) moments and the Fourier transform (complex moments). As dis-
cussed, the MMD allows to compare these moments by embedding two ran-
dom variables in Hilbert space using kernel approximation.

For path-valued data, Chevyrev and Oberhauser [62] introduce an ana-
logue to normalised moments using the signature. They prove that for suit-
able normalizations λ, the sequence

(E[λ(X)m
∫

dX⊗m])m≥0 (30)

determines the law of X uniquely8. They argue that the moments in the path
space (or sequential moments) up to order m are preserved (i.e. a bijective
property) for the truncated signature up to order m. [25] proposes the use of
this result with efficient algorithms and tools from machine learning such as
MMD and kernel approximation (e.g. [67]) for machine learning paths. [25]
also argue in favor of signatures as a provably optimal feature map ϕ(.) for
embedding paths generated by a stochastic process in into a linear space. The
reasons are twofold: (1) universality, which implies that non-linear functions
of the data are approximated by linear functionals in feature space and (2)
characteristicness, which is exactly their merit, i.e. that the expected value
of the feature map characterizes the law of the random variable.

Signature kernel. Let us now define the signature kernel as introduced
in [67] and [68]. In essence, it is just the inner product between the two
signature vectors of two random variables in the path space.

Definition 4.2 (Signature Kernel). Let x and y be two paths supported
on [0, T ], x : [0, T ] → RD and y : [0, T ] → RD. The signature kernel k:
[0, T ]× [0, T ] → R is defined as kS(x, y) = ⟨S(x), S(y)⟩.

Intuitively, say for S truncated at order 1, kS measures the similarity between
the drifts of the two paths. Truncated at order 2, kS looks at drift and
volatility similarity, and so and so forth.

8Up to tree-like equivalance, see [62].
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Signature MMD. The MMD can be used as a deterministic loss function in
a generative model as it is a distance measure between two random variables,
for instance the fake generated data and the true input data. When the path
structure of the random variable is crucial, the choice of traditional kernels
is inappropriate and we should use a sequential kernel. As described above,
this is exactly what signatures allow us to do. Let us first generalize the
MMD expression in (14) to:

MMD(µ, ν) = supf∈HEX∼µ[f(X)]− EX∼ν [f(X)] (31)

Hence, MMD is literally the maximum expected distance between two func-
tions in the embedded space H. Closer resemblance to (16) is rewriting (31)
into:

MMDS(µ, ν) = EXX′∼µ[kS(X,X ′)]−2EX∼µ,Y∼ν [kS(X, Y )]+EY Y ′∼ν [kS(Y, Y
′)]

(32)
The signature MMD. Expression (32) in itself is easy to compute, but its
computational performance hinges on how efficiently we can evaluate kS.

PDE kernel trick. An interesting recent result concerns a kernel trick for
sequential kernels, the signature partial differential equation (PDE) kernel
trick [68]. A first kernel trick for the signature kernel was introduced by
Kiraly and Oberhauser [69]. [68] then proved that the signature kernel can
be written as the solution of a hyperbolic PDE belonging to the family of so-
called Goursat problems. This substantially speeds up the evaluation of kS,
and allows for GPU-optimized parallellization of the PDE solver. Formally,
we can write:

δ2kS
δsδj

= ⟨Ẋ(s), Ẏ (j)⟩kS (33)

where kS(X(0), .) = kS(., Y (0)) = 1 and Ẋ(s) = dX
dt
|t=s and Ẏ (j) = dY

dt
|t=j,

which is a so-called Goursat PDE. The proof can be found in [68]. Supporting
on (13) they further show that this PDE can be written as a function of a
static kernel κ, e.g. the RBF or Matern kernel:

δ2kS
δsδj

= (κ(X(s), Y (j))−κ(X(s−1), X(j))−κ(X(s), Y (j−1))+κ(X(s), Y (j−1)))kS

(34)
After an appropriate choice of κ, equation (34) can then be solved using state-
of-the-art PDE solvers and efficiently parallellized over GPU. This allows for
an efficient evalution of kS in MMDS (32).
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4.2. Generative modeling architectures

This section briefly covers the main families of generative modeling archi-
tectures in the machine learning literature, linking them with their applica-
tions in the market generator literature so far in Section 4.2.1. They all have
their advantages and disadvantages in terms of efficiency and convergence in
training, innate complexity and tractability, flexibility to specific use cases,
et cetera. This will concisely be covered for all of them. Next, Section 4.2.2
describes our conditional variational autoencoder model (CVAE) in more
detail. Finally, 4.3 describes how conditional sampling, together with ex-
plainable machine learning (XML) tools such as Shapley (SHAP) values can
help us better understand the optimal portfolios and sensitivities to changing
market conditions in a data-driven portfolio construction context.

4.2.1. Main architectures in literature

Generative Adversarial Networks (GAN). Arguably the most pop-
ular architecture in generative ML are GANs. GANs [16] are a family of
models trained by a game between two networks, a decoder network (pre-
viously f−1

Θ (Z)) and a discriminator network. It samples a latent variable z
from a simple prior distribution P(Z), e.g. Gaussian or Uniform, followed
by a decoder network, the transform G(z), called the Generator. The dis-
criminator D(.) outputs a probability of a given sample coming from the real
data distribution. Its task is to distinguish samples from the real distribu-
tion P(X) from G(z). The decoder tries to produce samples as close to the
original distribution possible, as to fool the discriminator. This gives rise to
the following well-known minimax problem:

min
G

max
D

Ex∼P(X)[log(D(x)] + Ez∼P(Z)[log(1−D(G(z))] (35)

GANs are by far the most popular choice in generative modeling in general
[70], and for market generators in particular [30][33][71][37][49][72][45][43][32][73][74].
However, they are notoriously data hungry and difficult to train. This means
they often require loads of data before convergence is achieved, which is a
major issue in sparse data environments such as finance where thousands of
samples are available rather than millions. Moreover, they suffer from mode
collapse, they do not have tractable loglikelihoods in the loss function or in-
terpretable posteriors or even latent densities after training, and suffer from
general non-convergence and instability related to varying issues specific to
the chosen architecture [70].
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Generative moment matching networks (GMMN) a.k.a. MMD
networks. GMMNs [64] are a family of relatively simple generative models
that use a simple single forward pass through a neural network (rather than
expensive adversarial training) to generate samples, and share in architecture
that they use the MMD measure between the true and generated data in
the loss function. Hence, they are often called MMD networks. They are
calledmoment matching networks exactly for the reasons discussed in Section
4.1.2 on MMD being (under the Gaussian kernel) a discrepancy measure
between all the moments of the generated ’fake’ and the true distribution.
Although simple, the performance of GMMN has not always been consistent
(e.g. blurry generated images), partly because of a high sensitivity to the
choice of hyperparameters (such as widely diverging results as a function of
the training batch size). Therefore, GMMNs are often used in combination
with an autoencoder architecture. There are currently no market generators
that focus on GMMNs, although it was included in a comparison by [32] and
yielded comparable results as GANs for most evaluation metrics.

Variational autoencoders (VAE). VAEs were introduced by Kingma
and Welling in 2014 [14] and are the second (after GAN) most popular ar-
chitecture in generative modeling, with applications to market generators
in [51][52][54]. VAEs are autoencoders in the sense that fΘ(X) and f−1

Θ (Z)
are both neural networks, here respectively called the encoder and decoder
network. VAEs are characterized by their joint distribution over the latent
variables Z and the observed variables X: P(x, z) = P(x|z)P(z). Inference on
P(X) is in this context called variational inference using Bayes, by applying
Bayes rule on the joint distribution, evaluating the posterior distribution of
X given the stochastic latent space Z. Again, the prior P(z) is chosen over
a simple tractable distribution (mostly Gaussian), while P(x|z) is the dis-
tribution parametrized by by the decoder f−1

Θ (Z). [14] approximates the
posterior function P(z|x) using an encoder model fΘ(X), which is unknown.
Two contributions are key in appraising [14]. Firstly, they derive a lower
bound for P(X) by comparing this posterior with samples from an actual
Gaussian using the Kullback-Leibler divergence [75]:

log(P(x)) ≥ EfΘ(x)[log(P(x|z))]−KL(fΘ(x)||P(z)) (36)
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Maximizing the right-hand side9 of (36) thus corresponds to maximizing the
loglikelihood of the data distribution as a function of Θ. Secondly, they
use a mathematical trick called the reparametrization trick that allows for
backpropagation (cf. Section 4.2.2) over the latent space Z [14]. The model
converges fast, i.e. requires less data than GAN, and is generally more stable
than the above-mentioned techniques. It offers interpretable conditional dis-
tributions and latent space. However, it is somewhat less flexible than GAN
for alternative, bespoke loss functions that better reflect the downstream
application of the generative model.

Restricted Boltzmann machines (RBM). RBMs are energy-based mod-
els that date back to the Harmonium model introduced by Smolensky in 1986
[17]. They are essentially undirected bipartite graphs (two-layer neural net-
works), with one visible layer v that represents P(X) and one hidden layer
h representing P(Z). Restricted refers to the fact that there are no connec-
tions or model weights Θ between nodes within each layer, only across the
two layers. Each node in the graph represents a binary stochastic variable.
Boltzmann refers to the Boltzmann energy function that measures the likeli-
hood of the states of the graph (which in statistical physics is called a Markov
Random Field) by its joint distribution:

P(v, h) =
1

Z
exp (−E(v, h)) (37)

E(v, h) = −
m∑
i=1

aivi −
n∑

j=1

bjhj −
m∑
i=1

n∑
j=1

wi,jvihj (38)

where vi and hj denote the individual nodes or state variables in resp. v
and h. In this case vi and hj are stochastic binary, hence Bernouilli, vari-
ables, but this can be approximated with Gaussian-Bernouilli variables for
continuous distributions such as financial returns. The goal of training this
network is maximizing its joint likelihood, which corresponds to minimiz-
ing the energy of the graph’s state. Through Markov Chain Monte Carlo
(MCMC) techniques such as Gibbs sampling and improved alterations of it
such as contrastive divergence, it can be shown that the energy decreases as
PΘ(X), the distribution of the visible layer with parameters Θ, approaches
the true P(X), or the distribution of the data. Once training has converged,

9In this context referred to as the Evidence Lower Bound (ELBO).
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one can iteratively sample noise in v and back and forth with h until we
have new samples of P(X ′). This was the approach in the original Market
Generator paper by Kondratyev and Schwarz [48]. The results were con-
firmed by [49]. RBMs are surprisingly fast to train and the binary states
open unique segues for training RBM on quantum computer infrastructures.
Moreover, the results in [48] offer very realistic simulations of multi-variate
time series, reproducing stylized facts such as fat tails, autocorrelation and
volatility clustering. However, as an energy-based model it has a very inflex-
ible loss function in terms of customizability for downstream applications of
the generative model.

Normalizing flows (NFs). NFs is a class of neural networks which use
differentiable mappings to approximate bijective functions called diffeomor-
phisms. In our notation f−1

Θ (Z) would be a neural network that stacks
these diffeomorphisms (such as linear neural splines [76]) as to approxi-
mate some divergence measure between the target distribution P(X) and
the sampled distribution PΘ(X

′). For instance, NFs approximate using neu-
ral nets these transformations by applying gradient descent to the Monte
Carlo-approximated (MC) KL-divergence [47]:

∇ΘKL(P(X)||PΘ(X
′)) = −Ex∼P(X)(∇Θln(PΘ(X

′))) (39)

≈ 1

n

n∑
i=1

∇Θ(ln(|detJf−1
Θ
(fΘ(xi))|)− lnP(fΘ(xi))) (40)

where Jf−1
Θ

represents the Jacobian of the neural network f−1
Θ , the matrix of

first order derivatives of the network to the latent space values. The determi-
nant of the Jacobian thus plays a crucial role in approximating the KL using
MC. For the computation of the determinant to be efficient, the computa-
tion of the determinant of the individual diffeomorphisms is typically chosen
simple (e.g. linear splines). Making them sufficiently simple but expressive
enough is a key element of research in NFs [76]. As far as our knowledge
stretches only [47] have introduced a flow-based market generator for multi-
asset spot and option market simulation, in combination with an autoencoder
architecture. They mainly use NFs to leverage the invertibility property and
scale their methods to multi-asset simulation by fitting a Gaussian copula
structure on the Gaussian latent space Z. Apart from the clear increase in
complexity, there are no specific limitations of NFs mentioned in the litera-
ture, and they can easily be integrated with above-mentioned architectures
such as autoencoders.
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4.2.2. Conditional variational autoencoder

Given the above considerations, we decided to proceed with a variational
autoencoder architecture. It converges fast10 and is much more stable than
competing architectures, and it will allow us to interpret the (conditional)
distributions after training. In this section, we provide the inner details of
our architecture in terms of the notation that we have established throughout
the paper. We discuss the mappings fΘ(X) and f−1

Θ (Z), the loss function
L(X,X ′), the training algorithm and hyperparameters and finally the con-
ditions C.

Figure 3: Variational autoencoder architecture

A detailed look at the architecture. The architecture of a VAE is sum-
marized in Figure 3. As input we have the D-dimensional ambient space X
or the physical data domain that we can measure (e.g. R or Ξ). Using a flex-
ible neural network mapping fΘ : RD → RK , K << N , called the encoder,
we compress the dimension of the data into a K-dimensional latent space Z,
e.g. 10-dimensional. Using the reparametrization trick [15] we map Z onto
a mean µ and standard deviation σ vector, i.e. onto a K-dimensional Gaus-

10First experiments with VAE resulted in similar performance metrics with GAN, where
VAE was trained c.30 seconds and GAN c.30 minutes.
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sian, e.g. a 10-dimensional multi-variate normal distribution. Starting from
multi-variate normal data, we can recombine µ and σ into a K-dimensional
Z. The decoder neural network f−1

Θ : RK → RD maps the latent space
back to the output space PΘ(X

′) where X ′ can be considered reconstructed
samples in the training step, or genuinely new or fake samples in a generator
step. The quality of the VAE clearly depends on the similarity between P(X)
and PΘ(X

′).
Let us now zoom in on fΘ(X) and f−1

Θ (Z). Each neural network consist
of one layer of J mathematical units called neurons:

fΘj := A(
D∑
i

θi,jxi) (41)

Every neuron takes linear combinations θi of the input data point xi and
is then activated using a non-linear activation function A, such as rectified
linear units (ReLU), hyperbolic tangent (tanh) or sigmoid. In this paper we
use a variant of ReLU called a leaky ReLU :

LReLU(x) = 1x<0αx+ 1x≥0x (42)

where α is a small constant called the slope of the ReLU. All neurons J are
linearly combined into the next layer (in this case Z):

Zk :=
J∑
j

θj,kfΘj (43)

for every k in K. The decoder map can formally be written exactly like the
encoder, but in reverse order.

The loss function of a VAE generally consists of two components, the
latent loss (LL) and the reconstruction loss (LR):

L(X,X ′) = βLL + (1− β)LR (44)

The latent loss is the Kullback-Leibler discrepancy between the latent distri-
bution under its encoded parametrization, the posterior fΘ(X) = PΘ(Z|X),
and its theoretical distribution, e.g. multi-variate Gaussian P(Z). Appendix
B in [14] offers a simple expression for LL. The reconstruction loss is the
cost of reproducing PΘ(X

′) after the dimension reduction step, and origi-
nally computed by the root of the mean squared error (RMSE or L2-loss)
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between X and X’.

L(X,X ′) = β
1

2

K∑
k

(1 + σ − µ2 − exp(σ)) + (1− β)E(||X −X ′||2) (45)

This loss function will be revisited below. The parameter β can be tuned to
get so-called disentangled latent representations in the β-VAE architecture
[77].

In terms of training, the learning algorithm is quasi identical to most
deep learning methods. Optimal loss values L∗ are determined by stochasti-
cally sampling batches of data and alternating forward and backward passes
through the VAE. For each batch the data is first passed through the encoder
network and decoder network (forward pass), after which L is evaluated in
terms of Θ. At each layer, the derivative of L vis-a-vis Θ can easily be eval-
uated. Next (the backward pass), we say the calculated loss backpropagates
through the network, and Θ are adjusted in the direction of the gradient
∇ΘL with the learning rate as step size. The exact optimizer algorithm we
used for this is Adam (Adaptive moments estimation, [78]). Finally, we can
also use a concept called regularization, which penalizes neural models that
become too complex or overparametrized. We used a tool called dropout,
that during training randomly sets a proportion of parameters in Θ equal to
zero, and leaves those connections at zero that contribute the least to the
prediction.

In summary, the hyperparameters of this architecture are: (1) the number
of neurons in the encoder, (2) the number of neurons in the decoder, (3) the
number of latent dimensions K, (4) the learning rate and (5) the optimizer
algorithm and (6) the dropout rate. We opted for the following set-up (which
was optimized using Grid Search): 100, 100, 10, 0.001, Adam, 0.0.

After training, in the sampling or generation step, we start from a random
K-dimensional noise ϵ ∼ P(Z) which is K-variate Gaussian. Now, we only
need a decode step to generate new samples of PΘ(X

′)

Conditional VAEs. It is worth mentioning here that autoencoders are
the non-linear generalization of the principal component analysis. It can be
shown that with linear activation, e.g. A : R → R : A(x) = x, and squared
loss (L2-loss) the K factors in Z become the PCA factors. For PCA in
financial applications, it is common knowledge that these factors can change
over time when certain conditions change. To account for this, a popular
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method is to include instruments, or Instrumented PCA (IPCA), that are
in se exogenous to the timeseries in X but endogenous to the factor model.
These exogenous variables are e.g. macro-economic conditions, while the
timeseries are asset returns, and the factors are traditional factors from asset
pricing (market, momentum, size,...).

For VAEs it could be argued that the factors are also conditional, i.e.
there are exogenous variables or conditions C such that factors conditional on
these variables lead to useful PΘ(X

′|C). This is a small change to the VAE’s
architecture as we depict below in Figure 4. Note that the reparametrization
in Z is still happening but we left that out for simplicity. During training,
both the encoder and decoder now take the values for the condition variables
that were prevalent when the particular batch Xi was sampled as additional
input variables. In the generator step, we need both a source of noise, as
well as the currently prevalent conditions. Alternatively, we could alter the
conditions today, to see what happens with X ′. This will be discussed in the
Section 4.3.

In [48] the prevalent level of volatility of the modeled assets were used as
a condition in a conditional RBM. This was crucial to get heteroskedasticity
in the output paths and the related stylized fact of volatility clusters. In [51]
the authors use both the lagged path, the index level and the contempora-
nous level of volatility as conditions in a CVAE architecture. Their common
motivation was that, compared to PΘ(X

′), PΘ(X
′|C) much better reflects

the non-stationary aspects of the paths. The conditions that are relevant for
our problem will be introduced in Section 4.3, and elaborated (numerically)
in Section 5.

MMD-VAEs. Let us revisit the loss function in (45).
[ENTER DISCUSSION ON SIG-MDD]
Main argument in this paper: vastly dependent on X (R, Ξ ?) and the

downstream application.

4.3. Explainable machine learning (XML): attributing conditions to portfo-
lios

Conditions form economic priors to the model. They let us generate sce-
narios under the prevalent market circumstances (such as contemporaneous
volatility), but they also alow us to vary these external indicators and eval-
uate what that implies for our paths (and eventually our optimal portfolios)
today.
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Figure 4: Conditional variational autoencoder architecture

The path features that we want to preserve (e.g. drift and vol in R or
drawdown in Ξ) can now be considered the geometric priors of the model.
Whereas traditional simulation techniques have focused on the DGP, machine
learning allows us to approximate the DGP using flexible mappings and shifts
the focus of the modeling exercise to these two priors. It allows us to train
on historical conditions, while simulating on current conditions. This also
gives leeway for introducing nowcasting timeseries (such as real-time macro
data) into the model.

As a simpler toy example, we focused on the US market and collected 100
conditions Ci from the Federal Reserve Economic Data (FRED) database,
including credit and monetary data, interest rates, employment, commodity
prices, stress indicators, volatility indices, and consumer sentiment. Figure
6 gives an overview of the high-level categories. Table 2 in Appendix gives a
list of all the indicators we considered. To get a first idea of the most apposite
conditions, we look at the total drawdown path11 of the total US stock market

11I.e. one ξ, T ≈ 5000, D = 2
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Figure 5: The evolution of ξ of US Stock market index (Wilshire, left), the LASSO coef-
ficients of the conditions (right)

(Wilshire) and do a LASSO12 regression to select the conditions with the
most shared variance with ξ. This gives the weights displayed in Table 2. As
expected, the CBOE volatility index dominates the other coefficients. Other
stress indicators, such as the FED St. Louis Financial Stress Index [79] and
declining Consumer Sentiment as measured by the University of Michigan [80]
contribute significantly to general market drawdown. Moreover, timeseries
of manufacturing, export, currency and long-term mortgage rate date were
found significant. Only 4 factors had a significant negative impact on the
historical market drawdown.

The aim of this analysis is to introduce appropriate Ci to our generative
model, such that we can evaluate P(X ′|C) at the current level of C as well
as for our own scenarios of C. For instance, given the current level of volatil-
ity, what do drawdown paths and the optimal portfolio look like, and which
positions are most affected if one gradually increases the volatility to levels
seen during the GFC or the Covid-19-induced March 2020 meltdown? What
does one’s portfolio look like with current market sentiment, and which po-
sitions are likely to be first and mostly affected when sentiment turns sour
gradually? This is what we conceptually want to introduce here, and will
numerically evaluate in Section 5.

As a tool to evaluate changing paths and portfolios to changing condi-

12Least Absolute Shrinkage and Selection Operator, a simple lin-
ear regression with a L1-norm penalty on the coefficients, https://scikit-
learn.org/stable/modules/generated/sklearn.linear model.Lasso. We used 10-fold
cross-validation to find the optimal penalty hyperparameter.
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Largest positive contributors to ξ Largest negative contributors to ξ
CBOE Volatility Index 0,815680 US Gov’t Securities at All Com. Banks -0,142223
Avg Weekly OT Hours: Manufacturing 0,129751 Long Term Unemployment: 27 WKS -0,043401
Exports to Mexico 0,126585 JPN/USD Currency Exchange Rate -0,029723
Univ. of Michigan: Consumer Sentiment 0,079161 Avg Hourly Earnings: Manufacturing -0,001523
St. Louis Financial Stress Index 0,072814
CNY/USD Currency Exchange Rate 0,068154
CAD/USD Currency Exchange Rate 0,053743
Imports from UK 0,038683
30-yr Conventional Mortgage Rate 0,037272
Effective Federal Funds Rate 0,029571

Table 2: Lasso coefficients of Ci to ξ

tions, we use Shapley (SHAP) values [81]. Given one set of ncond conditions
C = (Ci)i={1,...,ncond}, an optimal portfolio can be seen as a linear combination
w∗

d, for d ∈ D, where the weights reflect some contribution (of risk, return,
drawdown) to the optimal portfolio timeseries w∗R or w∗Π. However, given
a set of Ns condition sets C = (Ck)k={1,...,Ns}, each set corresponding to a
C that generates sequences R or Π, each C will also correspond to a unique
optimal portfolio, i.e. for each k. Now we can see the w∗

k as the output, and
evaluate the contribution of each condition Ci in Ck to the optimal portfolio.
The SHAP values to each w∗

d can then formally be defined as:

Φi(w
∗
d) =

∑
S⊂[Ns\{i}]

|S|!(Ns − |S| − 1)!

Ns!
(w∗

d(S ∪ {i})− w∗
d(S))) (46)

This is the SHAP Φi for condition i in C in terms of optimal weight w∗
d.

Intuitively, for the Ns optimal portfolios we evaluate all the subsets S where
condition i did not contribute to the optimal portfolio w∗

d(S) and compare
with the optimal portfolios where it was w∗

d(S ∪ {i}). The average contri-
bution of this condition to the optimal weight thus constitutes the SHAP
value. This allows for visualizations of the conditional optimal portfolios,
such as waterfall and beeswarm plots [81], that are popular explainable ma-
chine learning tools for applications in deep learning and computer vision.

5. Numerical Results

6. Conclusions
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Figure 6: Macro condition high-level categories

7. Appendix
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Table 3: Macro-economic conditions

ID FRED ID FRED Cat. Detailed Cat. Indicator
0 TREAST Finance Monetary Data US Treasuries Held by the Fed
1 MBST Finance Monetary Data Mortgage Backed Sec Held by the

Fed
2 WALCL Banking Monetary Factors All Fed Reserve Banks - Total As-

sets
3 TLAACBW027SBOG Banking Monetary Factors All Commercial Banks - Total As-

sets
4 BOPBCA Banking Conditions Number of US Banks
5 USNUM Banking Conditions Number of US Commercial Banks
6 EQTA Banking Conditions Equity/Asset Ratio
7 TOTBKCR Banking Commercial Credit Bank Credit of All Commercial

Banks
8 TOTALSEC Banking Commercial Credit Securitized Total Consumer Loans
9 TOTALSL Banking Commercial Credit Total Consumer Credit Outstand-

ing
10 INVEST Banking Investment Total Investments All Commercial

Banks
11 USGSEC Banking Investment US Gov’t Securities at All Com.

Banks
12 CONSUMER Banking Loans Total Consumer Loans
13 BUSLOANS Banking Loans Total Commercial/Industrial Loans
14 DALLCACBEP Banking Delinquencies Delinquencies On All Loans And

Leases
15 T10Y2Y Banking Interest Rates US 10-YR / 2-YR Spread
16 TB3MS Banking Interest Rates 3-Month T-Bill: Secondary Market

Rate
17 DGS10 Banking Interest Rates 10-Yr Treasury Const. Maturity

Rate
18 GFDEBTN Business/Fiscal Federal Government Federal Government Debt (Public)
19 FYOINT Business/Fiscal Federal Government Interest on National Debt
20 FYONET Business/Fiscal Federal Government Federal Spending
21 FYFR Business/Fiscal Federal Government Federal Receipts
22 FYFSD Business/Fiscal Federal Government Budget Deficit/Surplus
23 CDSP Business/Fiscal Household Sector Consumer Debt/Income Ratio
24 PERMIT Business/Fiscal Household Sector New Home Permits
25 HSN1F Business/Fiscal Household Sector New Home Sales
26 CMDEBT Business/Fiscal Household Sector Outstanding Mortgage Debt
27 DGORDER Business/Fiscal Ind. Production Manufacturers’ New Orders
28 TCU Business/Fiscal Ind. Production Capacity Utilization: Total Indus-

try
29 TTLCONS Business/Fiscal Construction Total Construction Spending
30 BUSINV Business/Fiscal Other Total Business Inventories
31 ALTSALES Business/Fiscal Other Light Weight Vehicle Sales
32 UMCSENT Business/Fiscal Other Univ of Michigan: Consumer Senti-

ment
33 STLFSI Business/Fiscal Other St. Louis Financial Stress Index
34 OILPRICE Business/Fiscal Other Spot Oil Price - West Texas Inter-

mediate
35 CPIAUCSL Consumer Prices CPI Consumer Price Index: Seasonally

Adj.
36 UNRATE Empl & Population Household Survey Civilian Total Unemployment Rate
37 UEMP27OV Empl & Population Household Survey Long Term Unemployment: 27

WKS
38 UEMPMED Empl & Population Household Survey Length of Unemployment
39 CE16OV Empl & Population Household Survey Total US Workforce
40 EMRATIO Empl & Population Household Survey US Employment/Population Ratio
41 POP Empl & Population Population US Population
42 AHEMAN Empl & Population Est. Survey Avg Hourly Earnings: Manufactur-

ing
43 AWHMAN Empl & Population Est. Survey Avg Weekly Hours: Manufacturing
44 AWOTMAN Empl & Population Est. Survey Avg Weekly OT Hours: Manufac-

turing
45 DEXUSUK Exchange Rates Daily Rates USD/GBP Currency Exchange

Rate
46 DEXUSEU Exchange Rates Daily Rates USD/EUR Currency Exchange

Rate
47 DEXJPUS Exchange Rates Daily Rates JPN/USD Currency Exchange Rate
48 DEXMXUS Exchange Rates Daily Rates MXP/USD Currency Exchange

Rate
49 DEXCAUS Exchange Rates Daily Rates CAD/USD Currency Exchange

Rate
50 DEXCHUS Exchange Rates Daily Rates CNY/USD Currency Exchange

Rate
51 COMPOUT Financial Data Monetary Commercial Paper Outstanding

Continued on next page

31



Table 3 – continued from previous page
ID FRED ID FRED Cat. Detailed Cat. Indicator
52 VIXCLS Financial Data Volatility Indexes CBOE Volatility Index
53 GDP GDP & Components GDP/GNP US Gross Domestic Product
54 GNP GDP & Components GDP/GNP US Gross National Product
55 NETFI GDP & Components Imports & Exports US Current Account Balance
56 EXPGS GDP & Components Imports & Exports US Exports Goods & Services
57 IMPGS GDP & Components Imports & Exports US Imports Goods & Services
58 DGI GDP & Components Govt Accounting Fed Govt: Defense Budget
59 FGRECPT GDP & Components Govt Accounting Fed Govt: Tax Receipts
60 TGDEF GDP & Components Govt Accounting Fed Govt: Budget Deficit
61 CP GDP & Components Industry Corporate Profits After Tax
62 DIVIDEND GDP & Components Industry Corporate Dividends
63 PI GDP & Components Personal Personal Income
64 PSAVE GDP & Components Savings & Inv. Personal Savings
65 PSAVERT GDP & Components Savings & Inv. Personal Savings Rate
66 MORTGAGE30US Interest Rates 30yr Mortgage 30-yr Conventional Mortgage Rate
67 DPCREDIT Interest Rates FRB Rates Discount Rate
68 FEDFUNDS Interest Rates FRB Rates Effective Federal Funds Rate
69 GRCPROINDMISMEI International Data Indicators Production of Total Industry in

Greece
70 GRCSARTMISMEI International Data Indicators Total Retail Trade in Greece
71 GRCURHARMMDSMEI International Data Indicators Unemployment Rate - Greece
72 M1 Monetary Aggregates M1 M1 Money Supply
73 M2 Monetary Aggregates M2 M2 Money Supply
74 MZM Monetary Aggregates MZM MZM Money Supply
75 M1V Monetary Aggregates M1 Velocity of M1 Money Stock
76 M2V Monetary Aggregates M2 Velocity of M2 Money Stock
77 MZMV Monetary Aggregates MZM Velocity of MZM Money Stock
78 MULT Monetary Aggregates M1 M1 Money Multiplier
79 PPIACO Producer Prices PPI Producer Price Index: All Com-

modities
80 IMPCH Trade Imports Imports from China
81 IMPJP Trade Imports Imports from Japan
82 IMPMX Trade Imports Imports from Mexico
83 IMPCA Trade Imports Imports from Canada
84 IMPGE Trade Imports Imports from Germany
85 IMPUK Trade Imports Imports from UK
86 EXPCH Trade Exports Exports to China
87 EXPJP Trade Exports Exports to Japan
88 EXPMX Trade Exports Exports to Mexico
89 EXPCA Trade Exports Exports to Canada
90 EXPGE Trade Exports Exports to Germany
91 EXPUK Trade Exports Exports to UK
92 BOPGEXP Trade Exports Exports: Goods
93 BOPGIMP Trade Imports Imports: Goods
94 BOPGTB Trade Balance Balance: Goods
95 EXPGS Trade Exports Exports: Services
96 BOPSIMP Trade Imports Imports: Services
97 BOPSTB Trade Balance Balance: Services
98 BOPGSTB Trade Balance Balance: Goods & Services

Z
X
X ′

µ
σ
ϵ
Encoder
Decoder
Reparametrization Trick
C
Data input space P(X)
Latent space P(Z)

32



Data output space PΘ(X
′)

∝
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