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Abstract

This paper addresses some of the oft-quoted shortcomings of standard
portfolio construction frameworks. We first argue that because of (1) their
risk perception, i.e. the formalization of the risk-reward tradeoff for the
ranking of portfolios, and (2) because of their instability, they in practi-
cal applications often lack the properties of what we consider a rational
portfolio. The proposed algorithms revolve around the construction of
diversified portfolios in an iVaR framework. iVaR was introduced by the
financial technology firm InvestSuite and embraces the human perception
of risk in a portfolio: the frequency of drawdowns, their magnitude, and
the time to recover from them. A common challenge in any portfolio con-
struction framework is to make the allocation diversified, i.e. achieving
low risk by spreading over many lowly correlated assets rather than over
low risk assets in a concentrated way. We delve into the literature to find
out what diversification means in the most tractable construction frame-
works. We then try to define diversification in an iVaR framework. Next,
we compare three distinct viewpoints on how to achieve an optimally di-
versified iVaR portfolio: maximizing diversification benefits, penalizing
excessive concentrations, and recursive optimization on subuniverses or
clusters of assets. We backtest these strategies and compare out-of-sample
metrics such as risk-adjusted returns and diversification ratios with un-
diversified iVaR and standard construction frameworks using Hansen’s
bootstrapped model confidence set. We finally draw conclusions on which
viewpoint proves most valuable for a more rational and robust approach
to portfolio construction.
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Diversified Portfolio, Clustering, Hierarchical Risk Parity, Hansen MCS test
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I. Introduction

“It’s always better to be lucky than smart.” (Robert C. Merton)

There is something inherently irrational about traditional portfolio construction frame-
works. Rational decisions are defined as (1) the best decisions at every point in time,
(2) based on all available information at that point. (1) Best can be defined as the
investor’s ability to at least rank his investment opportunities (ordinal utility), with-
out the need for the exact differences in value between opportunities, and to pick the
prevailing options. This ranking should be coherent, consistent and transitive. (2)
All information means the investor is able to identify all investible assets and their
attributes. Rationality w.r.t. portfolios thus implies [3]:

e the ability to observe all possible alternatives and their attributes.

e the ability to at least ordinally rank portfolios (i.e. not necessarily continuously
‘score’).

e the ability to choose the best portfolios in a way that is consistent and transitive.
Le. if we prefer portfolio A over B, and B over C, we do not pick C over A.

At least in practical applications traditional portfolio construction techniques typically
lack many to all of these properties. The most obvious violation of rationality is that
(robo)investors are unable to deal with the complexity of the world and therefore can-
not possibly consider all the combinations of all investible assets in the world. Even
for the small subset of assets in their horizon, they do not know all the relevant at-
tributes. It would be naive to claim that machines would (ever) be able to observe all
these attributes, but it is a simple fact that quantitative portfolio techniques typically
reduce the number of features to be explored about an asset to the moments of its
historical performance. As we will argue later on, this is wrong but often very use-
ful nevertheless. However, it stays particularly surprising that historically, portfolio
theory quickly revolved around limiting the number of inputs to the optimization algo-
rithm, while finance and outperforming — or identifying the best ranked — portfolios
is all about holding and exploiting asymmetric information. The only explanation
in favor of these traditional views is market efficiency and rational ignorance, when
the benefits of exploiting additional information do not outweigh the costs of collect-
ing it. This is somehow how defenders of the efficient market hypothesis respond to
Stiglitz’ informational paradoz® [6]. Even if this would be true, it is hard to believe
that moments of the historical performance would suffice.

The second condition is more often violated than not as well by traditional methods,
since the ranking implied by their utility function? is notoriously instable. Admittedly,
information changes over time and thus portfolio preferences should be updated. How-
ever, traditional (variance-based) portfolio techniques change their implied rankings
drastically for a small fluctuation in the input. This makes us suspicious about the
quality of our initial ranking and leads us to suspect that issues of noisy estimation,
misspecification or overfitting are at the root of this instability, rather than a signal

LIf markets are efficient, why do banks and funds invest in multi-billion informational
systems?’
2i.e. most notoriously quadratic utility in modern portfolio theory.



that the world has genuinely changed. Importantly, traditional approaches do not only
suffer from noise-induced but also signal-induced instability [35] inherent to their risk-
reward formalization. These limitations are then accounted for with techniques we are
going to discuss later, but stability is often forced by constraints or naive shrinkage.
Portfolios are then robust by correction, not construction. With the dawn of roboadvi-
sors, automated investors should be rational by design, not correction. Although it is
in traditional frameworks easy to solve for the best portfolio, this inherent instability
makes us also often violate the third condition of consistency and transitivity over
time, as completely opposed preferences can be implied over subsequent periods of
time. Moreover, these issues oftentimes boil down to excessive concentrations in our
portfolio. Stability and diversification, therefore, are inextricably linked.

This same lack of robustness brings us to another contradiction in modern-day finance.
On the one hand, we are told that markets are extremely efficient and hard-to-beat.
On the other hand, many asset management firms use plain-vanilla financial anal-
ysis techniques and simple factor regression models to screen assets and construct
multi-billion portfolios. This anomaly epitomises why many asset managers fail to
consistently beat a benchmark, and occasional outperformance is more likely to be a
product of chance — being lucky — rather than skill — being smart.

The aim of this paper, and diversification in general, is to provide asset managers
with more robust decision making. Let’s say any investment decision is just a sample
out of the total population of potential decisions, which decision would consistently
outperform others? It’s the very decision that (1) maximises the amount of relevant
information incorporated in that decision and (2) optimizes how efficiently we use that
information.

— Firstly, statistics 101 teaches us that more information — or a more efficient use
of it — means lower variance, and lower variance in-sample (which determine
our decisions), give us more robust results out-of-sample (which determine the
results of our decisions).

— Secondly, the quintessential problem with human decision-making boils down
to bias: we fail to cope with the complexity of the world and increasingly big
data sets that fall beyond the grasp of standard econometrics. As a result,
asset managers (and their models) make shortcuts, and these shortcuts lead to
biased investments. The algorithms deployed in this paper are prone to bias and
overfitting as well, but it is much easier to detect and correct for such biases
with machines, rather than with humans.

This paper is a humble attempt to use information in a more efficient way and allow
for more robust decision making. We do not claim the aim of a paper would be
to construct a superior data set and resolve the first condition. Rather, we want to
provide a framework that is likely to outperform traditional techniques on this platonic
archetype of a data set. We should therefore be pragmatic and never forget that we
are essentially trying to rank portfolios in more rational way, by trying to formulate
the right problem and not applying some statistical trickery on the wrong problem. So
the question comes down to: based on the information at hand, how can we compare
portfolios and generate weights for the assets in our horizon that reflect the best ranked
one? Following our discussion this means (1) redefining the tradeoff or maximization



of utility in terms that adhere to what investors really see as risk and reward (Chapter
I), and (2) making the whole process more robust or less instable (Chapter II).

The paper is structured as follows. This introduction I. will set the stage. After a
brief history of traditional risk measures, we will define iVaR and compare it to clas-
sical measures. Next, we define diversification. What does it mean for a portfolio
to be diversified? Where do diversification benefits stem from and how do we quan-
tify them? Section II. answers these questions supporting its motivations on a brief
literature review. This allows us to elaborate on the link between iVaR and these
classical viewpoints. Section III. describes the data sets we used and then zooms in
on the obtained return, risk and diversification characteristics of each of the port-
folio construction frameworks for multi-period simulations. We draw conclusions on
the usefulness of these alternative views on diversification and their implications for
drawdown frameworks such as iVaR in section IV..

A. A brief history of traditional risk measures and their
shortcomings

“If you give a pilot an altimeter that is sometimes defective, he will crash the plane.
Give him nothing, and he will look out of the window.” (Nassim Nicholas Taleb)

Most of current-day portfolio optimizers and roboadvisors are based on Markowitz’
mean-variance optimization framework. Former CUNY professor and Nobel laureate
Harry Markowitz introduced a method [1] and algorithm [3] for asset allocation under
uncertainty in the 1950s, based on variance (1) or volatility as a risk measure. The
method laid the foundations for a vast field of literature, now referred to as Modern
Portfolio Theory (MPT). Moreover, the mean-variance tradeoff is a theoretical cor-
nerstone in other financial theories such as the Capital Asset Pricing Model (CAPM)
and the Efficient Market Hypothesis (EMH), with well-known applications in practical

and empirical finance®.

02 = 5 (rpa — B(rp))? &)

t=1

According to his theory, investors can compare all possible combinations or weights w
of the assets in their horizon according to the expected return ( E(rp:) ) and their
risk ( 02 ). One such combination dominates another if it offers a higher return for
the same variance or lower variance for the same return. Since we assume means and
(co)variances provide sufficient information for this tradeoff, we assume returns are
normally distributed — the natural distribution that is fully described by its first two
moments only. A result of using variance and the normal (or any elliptical distribu-
tion), is that the boundary set of all risk-reward tradeoffs is convex. The solution
to the method is then to determine the tangent point between this boundary — also
called the Efficient Frontier — and the lines composed of all combinations of a risk-
free rate and risky assets on the frontier. This point will maximize the ratio expected
return over variance, also known as the Sharpe ratio, which embodies the tradeoff we
started from.

The algorithm, the Critical Line Algorithm (CLA), is less well-known and solves the

3Such as widely adopted factor strategies, smart beta, and so forth.



quadratic optimization problem inherent to the method. In essence, it solves a se-
quence of standard mean-variance optimization problems, where we get the optimal
portfolio for some critical level of risk aversion. Apart from pioneering a systematic
methodology for assessing the risk-reward tradeoff of risky assets and this technical
contribution, Markowitz’ main insight was that investors should not assess risky in-
vestments as isolated opportunities, but rather investigate how adding risky assets to
a portfolio might improve the overall risk-adjusted return of that portfolio (cf. next
chapter). Therefore, his famous 1952 paper was actually the seminal paper on how to
quantitatively assess diversification (rather than qualitatively, using e.g. constraints
on asset classes or GICS* industries). This is exactly the aim of this paper.

MPT has many attractions: it is simple to understand and interpret results (using
variance-based measures such as Sharpe ratios, etc.) and it can be linked to other
financial theories and concepts. However, its limitations are also extensively docu-
mented in literature. Many of them refer to the simplistic assumptions that underlie
mean-variance optimization. The most prevalent one is that we choose variance as
our measure of risk, which means we assume returns are normally distributed. There-
fore, we ignore many of the features of the real profit-and-loss distribution (PnL) of
candidate portfolios and squeeze them into a normal straightjacket. (Conditional)
value-at-risk and drawdown measures try to remediate this shortcoming. Moreover,
variance or volatility has some other oft-quoted shortcomings, most importantly being
symmetrical and sign-ignorant. The first limitation means that volatility punishes pos-
itive dispersion, i.e. surprise positive returns, to the same extent as surprise negative
returns. The latter means that variance does not punish consistent negative returns.

The first answer to these issues was not proposed many years later, but only three
months after the famous Markowitz 1952 paper, by Roy [2]. Indeed, Roy’s theories
were not developed as a response to Markowitz, but concurrently. Markowitz later ac-
knowledged [11] that if Roy had published his work three months earlier and developed
a theory using his mean-SV efficient sets, we would be talking about Roy’s portfolio
theory today instead of Markowitz’ portfolio theory. SV stands for semivariance, the
first of the so-called downside risk measures. Roy argued that investors consider risk
asymmetrically as any deviation below some target return. Investors prefer safety of
the invested principal first, and will set some minimum acceptable return. Roy called
the minimum acceptable return the disaster level, and the portfolio technique Roy’s
safety first principle. The resulting risk measure is not variance (1), but a similar
expression (2). We consider risk as variance below some target return R:

T
1 2
SV = T ;Zl max (R — rpt,0) (2)

We call SV, the below-target semivariance. This should not be confused with a more
specific measure, the below-mean semivariance SV;,, where R = E(rp.), which is
highly adopted in literature:

1

T
SV, = Zmax (B(rp) — 7p,0)? (3)
t=1

el

(3) is closest in meaning to variance and can be seen als ‘half-variance’ for symmetric
distributions. For portfolios with symmetric distributions, (712, /SVy = 2, which is not

4@Global Industry Classification Standard developed by Standard & Poor’s, a commonly
used classficiation to assess or guarantee diversification.



true for skewed portfolios. This gives SV, the interesting interpretation as a measure
of skew to compare Markowitz with Roy criteria when constructing portfolios. It also
illustrates that variance can be seen as a special case of scaled semivariance where
R=F (’I” p,t)-

Where SV is a generalization of o, the work of Bawa and Fishburn [7] in the 1970s
generalized semivariance as part of the family of lower partial moments (LPM). Com-
pared to equation (2) and (3), there is nothing spectacular going on in equation (4)
below which describes the (a, R)-LPM:

T
(,R) — LPM = % S max (R — 7.6, 0)° 4)
t=1

What is spectacular, however, is that this generalization of & = 2 to any « in R resolved
many issues and academic discussions about downside risk measures, especially the
implications for the utility of wealth. Markowitz assumed quadratic utility, which he
borrowed from von Neumann and Morgenstern utility functions [19], and flow naturally
out of his equations because of the use of variance as a risk measure. For Roy’s SV it
was not that obvious, and from a theoretical stance that is one of the reasons why the
adoption of Roy’s measure was much less than the famous (Nobel prize winning) MPT
model. Roy once mockingly said [11]: “A man who seeks financial advice will not be
happy with the suggestion to mazximize his quadratic utility.” We can attest to that,
but unfortunately the (financial) academic world often picks mathematical derivations
and elegance before realism. Or in the words of Wassily Leontief [38]: “Page after
page of professional economic journals are filled with mathematical formulas leading
the reader from sets of more or less plausible but entirely arbitrary assumptions to
precisely stated but irrelevant theoretical conclusions.”

Looking at (4), we see that SV corresponds to @ = 2, and a = 0 corresponds to the
probability that the return is lower than R. Therefore, the latter case is called the
below target probability (BTP). The breakthrough of the LPM family is that o can
be any real value, like 2 or 4, including fractional values like 2.11 or 4.32. Fishburn
[7] proves that these different o values belong to different risk profiles for a mean-
LPM rational investor, where low values are indicative of risk-seeking investors, and
high values pertain to risk-averse investors. There is no reason to prove this here or
delve into utility theory, it is only worth mentioning that because of LPM downside
risk measures are fully ‘compliant’ with utility theory and classical risk measures such
as variance and semivariance are special cases. Moreover, (conditional) value-at-risk
measures can be categorized as belonging to the LPM family, as we discuss below.

Value-at-risk (VaR) was introduced by JPMorgan’s RiskMetrics in the 1990s and looks
at the left tail of the PnL. VaR was basically an answer to JPMorgan’s CEO request
to give him, every day at 4pm, a back-of-the-envelope estimate of how much money
his desks could lose over the next 24 hours with a certain very low probability. This
is a very intuitive definition of risk: how much money we could lose because of certain
extremely infrequent but negative events (with a certain low probability p or confidence
level ¢l =1 — p), on a certain asset or portfolio, over a certain time horizon. VaR (5)
corresponds to a cutoff point deep in the left tail of our PnlL distribution. More
intuitively:



p=1—cl=Pr(r<VaRi_a(F)) = F(VaRi_a(F)) (5)

where p is the probability that the return is worse (smaller) than VaR®. Taking a close
look at (5) explains the link with LPM. VaR can be seen as the inverse of LPM of
order 0, and is just a different way of looking at the same thing. Where the BTP gives
you p when we assess a disaster level of return R, VaR gives you R when we assess a
very low probability p. BTP and VaR bring you to the same viewpoint on top of the
same hill, just the tracks to take you there are different. This is explained in more
detail in Appendix 1.

VaR ignited a broad field of literature on how to determine this distribution (e.g.
parametrically, non-parametrically, Monte Carlo, etc.), evaluate it over time, and in-
corporate this risk management practice into portfolio management. Moreover, VaR
adoption by regulators challenged banks with the huge data management task of aggre-
gating their risk data in such a way that it was possible to calculate VaR at portfolio,
desk and bank level. VaR’s main attraction is that it is very simple to understand,
and (under certain assumptions) calculate and backtest. Moreover, it is expressed in
a measure that is intuitively close to our sense of risk: Pounds.

However, VaR has some major limitations. First and foremost, VaR does not look
beyond the cutoff, i.e. what happens deeper in the tail. Therefore, although we can
set this probability very low, we are ignorant of those scenarios that are even less
probable but still possible. The Global Financial Crisis (GFC) of 2008 and the un-
precedented volatility caused by the sudden worldwide outbreak of the Coronavirus
underscore the importance of considering all worst-case scenarios or Black Swans, not
just one scenario. Another consequence of considering only one cutoff point is that
some diversification benefits tend to get lost in a VaR framework. Individual assets
with very high potential losses that are less likely than the cutoff point can go unno-
ticed by VaR. When we combine many of these in a portfolio, the joint probability
function will tell us that the odds of one such an asset going to ruin is higher than
the individual probability. If now the potential loss is measured by VaR, the risk of
a portfolio is higher than the sum of the risks of individual assets. In mathematical
terms, VaR lacks subadditivity. By definition of diversification, a portfolio of assets
should never be more risky than holding similar assets individually. This is a main
point of the next chapter. That is why regulators have adopted Expected Shortfall, the
subadditive expected tail loss, as a new measure of market risk in the FRTB (Funda-
mental Review of the Trading Book) in the revised Basel III framework, often referred
to as Basel IV.

Expected shortfall (ES) or Conditional Value-at-Risk (CVaR) is very similar in nature
to VaR, but it answers a slightly different question: how much money do we expect
to lose on a certain asset or portfolio, with a certain probability p (or confidence
level ¢l = 1 — p) over a certain time horizon, given that things are at least as bad
as VaR suggests? So if things turn south, how bad can it get? This is simply the
probability-weighted average loss beyond some cutoff point (VaR):

50r, equivalently, that the loss is higher, since we can define VaR as a positive number
drawn from the LnP or loss-and-profit distribution.



CVaRi_a(F) = E(rlr < VaRi_a(F)) (6)

Again take a close look at equation (6): it is conceptually intimitely related to the
LPM of order 1, where we start from specifying a probability cl instead of a disaster
return R. Hence, ES or CVaR is the inverse concept of a lower-partial moment of order
1 where R = VaR. Note that LPM would take the mean excess loss R —r, while CVaR
just takes the average loss in excess of VaR, but essentially the two things measure
the same risk. This is again explained in more detail in Appendix 1.

CVaR is preferred over VaR since it is subadditive, and since it has other desired prop-
erties which makes it a so-called coherent risk measure (see below). In brief, we can
say that it inherits the attractions of VaR, and adds this desirable property. However,
its main limitation is its perception of risk. CVaR is an extremely useful measure for
the determination of a bank’s, or even your personal, capital adequacy. How levered a
bank’s business model can be, or how much exposure you can bear with taking a bet,
both depends on the expected size of potential severe losses. However, for portfolio op-
timization purposes, CVaR misses a crucial point. It by construction neglects smaller
losses and their persistence over time, as ES is essentially a static measure. For in-
vestors, smaller losses matter as well, especially if they are autocorrelated or persistent
over time (the ‘dynamics’ of losses). This should be captured by a risk measure used
in a portfolio construction framework, in contrast to traditional risk management and
scenario analyses. Small but persistent losses will, as much as more severe singletons,
influence the efficiency of the allocation. In summary, CVaR has desirable properties
but it does not capture (1) all relevant losses to rational investors, nor (2) the time
dimension.

Finally, we can introduce drawdown risk measures. Concepts such as peak-to-valley
drawdowns®, recovery periods or time-under-water 7, Calmar ratios ®, Sterling ratios °
and Burke ratios ' are commonly used to assess fund performance ex-post. Moreover,
drawdowns naturally influence fund management by regulations and the behaviour of
client accounts. For instance, [18] suggests for US CTA portfolios that (1) regulators
may issue warnings at 15% drawdowns and shut down accounts automatically at 20%,
(2) clients, on the other hand, will very unlikely tolerate 50% drawdowns or (even
small) drawdowns that last for longer than a year.

In general, drawdowns are the differences £ between a portfolio level V' and its running
maximum or high-water mark. Drawdown measures can be based on the worst-case
plunge or maximum drawdown M DD, average drawdown ADD or conditional draw-
down a — CDD (average of a% worst drawdowns, see Appendix 3). The time to
recover from drawdowns or reach a new high-water mark is called the recovery period
or time-under-water.

AD(V) = (&, &), & = max(Vs) = V; (7)
MDD(V) = max(&s) (8)

SMDD from peak to trough.

"Time from one to the next high-water mark.
8Expected return over MDD ratio.

9Expected return over ADD ratio.

10Expected return over root-mean-squared drawdowns.

10



ADD(V) = 23 ¢ )

el

The maximum drawdown can be seen as a dynamic generalization of VaR or worst-
case static loss, while conditional drawdown can be seen as a dynamic generalization
of CVaR or expected static loss. Effectively, we are just replacing the VaR functional
by an AD functional [18]. This is explained in more detail in Appendix 3.

Figure 31 below summarizes our brief history so far.

Markowitz 1950s

special case of

VARIANCE j

Roy 1950s

special case of

SEMIVARIANCE j

Bawa, Fishburn 1970s

conceptual equivalence

LOWER PARTIAL

MOMENTS j

JPM - Rockafellar, Uryasev 1990s

dynamic generalization

VaR - CVaR j

Chekhlov, Uryasev, Zabarankin 2000s

MDD - CDD

Figure 1: Overview risk measures

Given that regulators stress the concept, and that it naturally influences client be-
haviour, it is obvious that one could optimize for drawdowns in a portfolio construc-
tion framework. However, it was not until Chekhlov, Uryasev and Zabarankin [18]
published a paper on portfolio construction with drawdown risk measures that it was
properly considered a measure used to generate mean-drawdown efficient sets and op-
timize portfolios ex-ante. Conceptually, this might be surprising, but the reasons are
twofold. Firstly, solving for optimal portfolios with drawdown measures is mathemat-
ically an order of magnitude more difficult than mean-variance optimization, although
conceptually equally easy to grasp. Secondly, when we do not merely utilize a measure
as ex-post evaluation but as part of an optimization algorithm, the risk measure has
to have some desirable mathematical properties’!. These required desirable properties
did not reach wide academic consensus but after the work of Artzner and Delbaen in
1999, in what they call coherent risk measures [10]. The 6 axioms of good risk mea-
sures are listed and explained in Appendix 2. [18] proved that drawdown measures
are coherent and use them in optimization. Appendix 3 provides the intuition behind
their proofs. This is essential, as it makes sure concepts such as diversification hold
in a construction framework. That is why we will delve into this again in the next

11 This in order to be sure that we do not get any impermissible behaviour, for instance on
different asset classes or environments (e.g. the VaR example on options).

11



chapter. Chekhlov et al. further elaborated models that generate sample V paths and
optimize returns under drawdown constraints (M DD, ADD and o — CDD). How-
ever, they did not incorporate drawdowns in their objective as such. Essentially, their
optimization algorithm — like others [18][16][15][13] — is a maximum return objec-
tive under a maximum drawdown constraint. This gives us a set of mean-drawdown
efficient portfolios, but does not pinpoint the optimal portfolio!?.

In summary of this section, we can say downside risk measures are an important
improvement over symmetric ones. Further, the widely adopted VaR and CVaR mea-
sures can be examined within the wider family of LPM models. Finally, we said that
drawdown measures are dynamic generalizations of (C)VaR measures and provided an
argument for their use in optimization. They are dynamic, intuitive and conceptually
easy to grasp. However, the reason why they have not yet been widely adopted, and
Markowitz optimization is still omnipresent in e.g. the roboadvisory industry, is that it
is an order of magnitude more difficult to solve for than variance. Including drawdown
measures in your optimization problem requires the translation of your problem into
a more complex LP program such as in Chekhlov et al. Even doing so, we argued
this is more optimizing with drawdowns rather than for drawdowns. Drawdowns are
not truly used as risk measure, but rather as constraints'®. This is where portfolio
construction with drawdowns still misses a valuable opportunity.

B. iVaR: minimizing stress for investors
“The proof of the pudding is in the backtesting.” (Emmanuel Wildiers)

So following our discussion in the previous section, what do we desire from our risk
measure? It should take into account (1) the magnitude of losses, (2) the frequency of
losses and (3) the time to recover from them. We want to design our risk measure in
such a way that it is natural to investors. What is risk? It is more than a likelihood
of losing money. In terms of the life of an asset manager, it is the amount of worried
phone calls (s)he gets from clients (frequency), the severity of the call (magnitude) and
the duration of the period these calls accumulate (duration of the loss). These elements
constitute financial risk, or financial stress, from a human-centred perspective. Say we
want to provide investors with a ride that is as smooth as possible, or as stress-free as
possible, how can we measure both losses and the time to make up for them?

If we would try to account for both the size and frequency of losses, we need a downside
risk measure and in particular a drawdown measure, since we also want to add time
as a dimension. Minimizing these dimensions corresponds to penalizing deviations of
our portfolio from monotonic growth. However, we argued optimizing for this is not as
trivial as assessing some ex-post average drawdown of a timeseries, but requires solving
a complex combinatorial problem for w. The proposed measure in this paper is the
expected average residual from monotonic growth, from here called iVaR. iVaR is an
integrated measure of risk, in the sense that it calculates the integral of drawdowns over
time for many generated trajectories (see Fig. 2). iVaR is the average drawdown or

12 Although one could opt for the respective maximum Calmar and Sterling portfolios.

13For instance, their rationale could be used by a roboadvisory app to simply maximize
client returns while restricting maximum drawdown to 25% because otherwise clients would
withdraw their money and delete the app. It is clear that this would be a useful application
and drawdowns have advantages over traditional measures, but this does not formalize our
perception of risk any better.
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PORTFOLIO VALUE iVaR

Figure 2: iVaR as an average expected drawdown (%)

time-weighted average distance between many simulated portfolios and their running
maxima. From these simulated trajectories, we want the portfolio that provides us
the smoothest ride, i.e. first we want to minimize iVaR.

Figure 2 illustrates iVaR graphically: the time-weighted average drawdown is the
area under the imaginal horizontal line that establishes the running maximum and
the actual portfolio value. Minimizing the integral of these areas by reconfiguring
the weights of our portfolio corresponds to pushing our portfolio towards monotonic
growth, or ‘minimizing stress for investors’.

Mathematically, the closest closed-form expression to iVaR is (9), which we could
use ex-post to assess an ‘individual’ iVaR of a specific portfolio. However, our goal
was to translate this intuition into an ex-ante optimization problem. As such, we
cannot assess iVaR in ‘isolation’'*, but we can build on (9) in designing diversification
measures.

In summary, as a natural extension to our previous discussion on risk measures, iVaR
calculates the residuals w.r.t. monotonic growth and minimizes them explicitly in the
objective of the optimization problem. This requires going from the relatively sim-
ple ‘max,, Return(w), s.t. Drawdown(w) < D’ program we discussed before, to a more
complex ‘min,, iVaR(w)’ problem'®. As we argued, this is an order of magnitude more
difficult and computationally intensive than mean-variance optimization, but provided
current innovations in convex optimization and modern-day processing capacity this
optimization opportunity has now become feasible. The goal of this paper is to opti-
mize for iVaR, to provide investors with a smooth ride, while at the same time making
sure that we do not invest in low-iVaR assets in a concentrated way. The easiest way
to guarantee this is by adding additional constraints in terms of geography, sectors,
and so forth, i.e. simply adding ‘s.t.’s to the algo. This is ad hoc, often arbitrary
and almost always suboptimal. In the next chapters we will therefore measure and
monitor for diversification using different viewpoints, ultimately tweaking the model’s
objective in our pursuit of optimal diversification.

141.e. iVaR should be assessed at portfolio level after solving the MILP problem (thus be
derived from the optimal objective value) and is conceptually less meaningful on individual
trajectories. We do not provide the more technical definition of the problem here to keep the
flow of the introduction, but it is provided in the next chapter.

15 And its natural extensions (cf. next chapter).
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II. What is diversification?

“ My ventures are not in one bottom trusted, nor to one place; nor is my whole estate.
Upon the fortune of this present year: Therefore, my merchandise makes me not sad.”
(William Shakespeare in The Merchant of Venice.)

What is diversification? It sounds like an easy question since everyone has an intuitive
sense of what diversified means. A diversified wardrobe, for instance, means one has
a variety of clothes, covering the risk of extremely cold or warm weather. When we
look for all-weather investments, how do we define diversified? Common phrases such
as “Don’t put all your eggs in one basket” and the Shakespeare quote epitomize our
intuition: we spread out the risk of our portfolio over different investments such that
our exposure does not stem from one source. Our asset allocation becomes a risk
allocation, and next to an analysis of return contribution, we also want to know the
risk contributions of our positions.

In a variance framework, these contributions are relatively simple to determine. It’s a
variance adjudication problem, much like all standard regression problems. However,
the relationship between our need for diversification and the reliability of our covari-
ance estimates is a bit convoluted. We will delve into this later in this chapter. For
(conditional) VaR and drawdown measures, this is less trivial to determine. Therefore,
we first need to answer some more philosophical questions about diversification.

The fact that we want to spread out our investment in different investments, implies
that some assets are more similar than others. Hence, similarity and dissimilarity
between assets, and how we measure them, is at the heart of quantifying diversification.

We should imagine our economy as an interconnected network of agents that essentially
establish contracts between each other. These agents can be evaluated at the level of
individuals or firms. Sometimes these contracts become more valuable (frequency
and monetary value implied by the contract increases) and sometimes they become
less valuable, or even default on their obligations. An economy is an interconnected
system of these obligations, and it works like a watch. Sometimes one piece fails, and
most other parts of the watch break down as well. This is the source of the risk, and
some parts of the watch are more affected than others. The goal of diversification is
to systematically identify these relationships and make sure not all of our positions
are exposed to the same predictable source of risk. With predictable, we do not mean
that we know when it is going to break down, but we know from the past there is a
proven link between source X and asset Y. When we evaluate the investible assets in
our horizon and calculate correlations, we assume this source is a latent source and
we can observe it through its common effect on the time series of their returns. We
are building a graph similar to the interconnected network of economic relationships,
albeit an oversimplification. What we do is we see every company as a node, connected
with every other company through an edge. A graph with 500 companies of the SPY,
would generate 124,750 such relationships. Every edge has many attributes about that
relationship: the nature of the relationship, the activity (if any) between the firms,
whether they are in a similar industry, whether they are located in the same country,
and so and so forth. These are all pieces of information that can help us in spreading
risk over many sources. However, portfolio optimization literature tends to reduce this
information to a single number: correlation. Correlation (Pearson’s rho) is a linear
measure of association that can be estimated from the return series and tells us the
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following. The value for every edge ranges between -1 and 1, will be 1 if they are
identical in exposure to the source, 0 if they have no shared source of risk and -1 if
they have exactly the same source but opposite exposure to it. However, correlation
is just one way — and in the case of iVaR not the ideal one — to look at similarity or
dissimilarity, as we will discuss later on.

The remainder of this chapter hinges considerably on this concept of the graph and
how the most tractable frameworks see this graph. With correlation, most of it has
been said, but we will delve deeper into the issues caused by this graph for high-
dimensional settings (the Curse of Dimensionality and Markowitz’ Curse of Diversifi-
cation) and how literature tried to resolve it (using shrinkage in robust optimization,
or hierarchical relationships discovered with clustering). In terms of frameworks, we
will look at modern portfolio theory, maximum deconcentration, minimum variance,
inverse variance, maximum decorrelation, equal risk contribution, most-diversified and
hierarchical risk parity allocations. Next, we make the link with iVaR in subsection
B.

A. Different views on diversification

a. Markowitz’ modern portfolio theory (MPT)

“A man who seeks financial advice will not be happy with the suggestion to mazximize
his quadratic utility.” (Arthur Roy)

We again start with the father of portfolio theory, Harry Markowitz. Recall that the

optimal portfolio according to the mean-variance criterion maximizes the Sharpe ratio

(SR):

E(rp —r¢)
Op

SR = (10)
This ratio represents the expected value of the excess return of the portfolio p over the
risk-free rate f, divided by the risk or standard deviation of the portfolio. Therefore,
MPT gives us the maximum Sharpe portfolio. The objective passed to the quadratic

solver can also be written as'®:

max(w’r — %\/WTEW) (11)

where w is the vector of weights we try to determine, r the vector of expected returns,
Y. the variance-covariance matrix and A a tuning parameter. In theoretical terms,
we maximize quadratic utility that is linearly proportional with expected return and
quadratically and negatively proportional with the risk, where A represents the risk
aversion of the investor.

Now what is the impact of diversification in such a framework and where do diversifi-
cation benefits stem from? The power of diversification in a mean-variance framework
is aptly illustrated in the next set of simple equations derived by Markowitz in the

16The max SR portfolio is then obtained by solving recursively for MV efficient portfolios,
where the optimal portfolio corresponds to a critical level of risk aversion A. This is illustrated
in Appendix 8.

15



1950s. If we define portfolio variance as:

on = ZZwichov(ri,rj) (12)

? J

The risk of the portfolio will decrease if we add low (ideally negative) elements to
our covariance matrix, which will increase the Sharpe ratio of the portfolio. When we
rewrite (12) using the average risk of our individual positions (13) and their average
covariance (14), we find the following very interesting expression (15).

21 2
o= EZ o; (13)

cov = ﬁZZcov(m,m) (14)

i

2 o n—1
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1
- cov (15)
The first term of equation (15) tells us that by ‘naive’ diversification, i.e. simply
adding random instruments to our portfolio therefore increasing n, we can drastically
reduce portfolio variance. This explains why some empirical evidence [28] suggests
that on average a portfolio of only 12 stocks exploits almost 90% of the diversification
benefits *7. Moreover, after adding 40 stocks to the portfolio the additional reduction
in variance of naive diversification becomes negligible (our first term %52 is close to
zero and remaining variance is due to cov).

The second term of (15) explains the power of ‘smart’ diversification, i.e. picking
those instruments that are lowly (ideally negatively) correlated with each other. This
requires managerial skill and boils down to picking instruments over different asset
classes, geographies and industries.

This type of insight generated by MPT proves the common adage that models can
be wrong, but still useful. MPT relies on simple assumptions (cf. introduction), but
gives us insight in the relationship between expected variability in a portfolio — albeit
a naive measure of variability —, the number of assets in our portfolio*® and how we
should pick them. It is very nice in theory, but breaks down in practice.

This brings us to our graph and the link with covariance misspecification. For every
edge, we need to estimate a correlation measure. Consider the SPY, even if we can
estimate one such value with relatively small error, the combined error of 124,750
such estimates can be enormous. This is the intuitive explanation for covariance
misspecification and Markowitz’ Curse of Diversification.

The more statistical explanation is that it is a Curse of Dimensionality. If we con-
sider a universe of N assets, we need to determine N(N-1)/2 correlations. This is
the relationship between 500 nodes and 124,750 edges. The Curse of Dimensionality
generally refers to issues with statistical estimation where the number of parameters
to be estimated scales badly with the number of units N. This leads to an ill-posed
problem: an explosion in variance in the estimated coefficients and occasionally our

17The reduction in variance by adding random instruments, compared to a fully concen-
trated portfolio.

18For instance, the size of a reasonably diversified portfolio (be it in variance terms) is a
crucial parameter for any fund.
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solver tries to solve an underidentified set of equations. The latter would lead to a
perfectly overfitted family of solutions, rather than a unique solution. In our case, the
number of correlations scales quadratically with N. Given a fixed sample T for every
N, we only have TxN observations, while we have N(N-1)/2 correlations. As a result,
we need to collect at least T > (N — 1)/2 to avoid underidentification, which is not
a trivial job given T is restricted in time and N should be large (cf. our definition
of rationality). Even in less extreme cases we typically consume degrees of freedom
to such a large extent that the variance in the estimates of our covariance matrix is
impractically large.

Secondly, the higher the average estimated covariance, the higher these errors. This
means that the more correlated the assets in our scope are on average, or the higher
our actual need for ‘smart’ diversification, the larger the errors in the solution will
be. From a more statistical viewpoint, this is because the estimated covariance matrix
3 is ill-conditioned, i.e. it has a high condition number which is the ratio of the
maximum and minimum eigenvalues!®. This inevitably leads to large errors in our
eventual solution, as we need to invert ¥ according to CLA. In more practical terms,
the higher the average correlation in our universe, the more uncertainty in 3, the more
uncertainty or less stable the solution w will be. This unfortunate fact about MPT
and CLA is known as Markowitz Curse of Diversification [33]. Statistically this implies
high standard deviations around the estimated weights, and large changes in weights
when the input data changes a little bit. In practical terms, this means instability,
high concentration and high turnover when rebalancing your portfolio.

A commonly used technique to reduce the uncertainty in 3 is shrinkage and robust
optimization. The term shrinkage refers to a broad class of penalized estimations.
Penalized essentially means we both try to minimize the deviation of our estimation
from its true value®’, as well as the number of parameters to do so. A penalty forces
our algorithm to estimate on average smaller covariances, but with smaller variance in
the estimate. The most popular alternatives are Tinkhonov or Ridge estimation, which
uses an L2-norm penalty?’, and the Least Absolute Shrinkage and Selection Operator
(LASSO) which uses an Ll-norm penalty®?. In the jargon of robust optimization,
these are called the quadratic and box uncertainty terms in our objective function
[23]. Both of them make our estimate biased — the estimated value has a different
expectation than the true value — but reduce variance — as the tuning parameter
of the penalty somehow ends up in a denominator in the variance formula. There is
no need to prove this here. What is important, however, is that L2-like penalties can
never shrink correlations to exactly zero?3. This effectively means cutting edges in the
graph for assets that are very lowly correlated and only introduce additional variance
in the estimation. With LASSO, however, we can perform covariance selection, and
shrinkage gets a more visual interpretation.

Figure 3 and 4 illustrate the idea for the constituents of the S&P500 and BEL20 (20

19We are not going to engage in lengthy discussions and formulae on eigenvalues here, but
Appendix 4 reduces previous comments to a brief discussion on some stylized facts of financial
correlation matrices.

20For instance using least-squares.

218quared values of coefficients. This comes down to shifting each eigenvalue with a given
offset, see Appendix 4 and 6.

22 Absolute values of coefficients.

23The reason is basically that from the first-order condition derived from an objective func-
tion with squared coefficients, we can never set that coefficient to exactly zero.
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Figure 3: ¥ according to Markowitz

largest stocks in Belgium by market cap) respectively. Remember, the fully specified
3 requires N(N-1)/2 estimations of correlation for N assets, that is 124,750 and 190
correlations respectively. Figure 3 (a) and (b) show the full graph we introduced in
the introduction of this chapter, where every edge corresponds to one number (the
correlation) which summarizes the relationship between the two stocks. Because of
their vast number, it was impossible to annotate them. Moreover, for the S&P500
the lines are so dense that we just see one black surface. Figure 4 shows the sparse
counterparts of these graphs. Only the correlations that really matter were kept,
corresponding to using an L1 penalty with, in this case, a rather large penalty tuning
parameter. We now see that these relationships become more manageable to observe,
and more importantly, they can be estimated with more confidence.

What is more interesting is that these figures aptly illustrate the link with clustering
(we will delve into clustering in h. and Appendix 7). Reducing the full covariance
matrix to only those relationships that are relatively important is similar to defining
discrete sets of groups of assets that are more correlated. Figure 3 (c) and (d) show
the full clusters of S&P500 and BEL20, i.e. the full graph where the highest correlated
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assets are put together, rather than on a radial axis. Figure 4 then shows the sparse
cluster counterparts. We indeed see that only dense clusters or land masses of assets
are kept, while the islands in between them are flooded. For a small number of assets
such as the BEL20, this looks like a web structure, where assets close to each other
and close to the center are most correlated®’.
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Figure 4: Sparse
b. Equally-weighted portfolios (EWP)

“All of a sudden everything was highly correlated.” (FT.com, April 2009)

Equally-weighted portfolios or maximum deconcentration portfolios are extremely sim-
ple in their set-up. With N assets the weights simply are:

24Important remark: assets that are not significantly correlated with any other asset are
clusters on their own, and dropped out of this visualization.
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w=(1/N .. 1/N) (16)

Their motivation is similar to the ‘Talmudic rule’: when you don’t know how to
distribute your wealth, just make sure you’re invested in as many types of resources as
sensibly possible (e.g. land, a house, a business, ...) and then allocate equally among
these resources. This is extremely simple and sometimes very effective. Literature
[24][36][37] suggests that EWP often outperforms MPT out-of-sample because of the
overfitting inherent to covariance misspecification. It is only when we have a relatively
low number of assets compared to the number of observations, and when we estimate
covariance using the correct estimator [17], that MPT significantly outperforms EWP.

The idea of diversification in this setting is that we support on naive diversification
(the first term in (15) ), and that we invest in many assets and distribute equally be-
cause remaining reduction in risk might be spurious — think about the FT.com quote.
Maximum deconcentration deliberately neglects a risk measure, i.e. concentration in
the sense of risk contribution. EWP establishes diversified portfolios as we will never
have concentrations that stem from spuriously uncorrelated assets like we could have
in more sophisticated methods. In terms of the graph, EWP tells us to: (1) make it
reasonably large and consider many nodes, (2) ignore information in the edges, and
just (3) give every node the same piece of the cake.

The main shortcomings of this perspective is that it is naive, ignoring asymmetric
returns and risks — however we measure it — between assets, etc. Therefore EWP
will never give us an optimal solution, but it serves as a most transparent benchmark.

c. Minimum variance portfolios (MVP)

With minimum variance portfolios the idea is to minimize portfolio variance given a
variance-covariance matrix 3. Since returns are extremely hard to forecast, and the
mean historical returns all but suffice to measure expected return, we minimize risk
(the denominator of SR) while ignoring returns (the numerator of SR):

n}li)n(wTEw) (17)
Minimum-variance optimization often outperforms mean-variance optimization out-
of-sample. Ignoring r means we do not need its (spurious) estimation. From the
perspective of diversification, this corresponds to the intuition of the second term of
equation (15). We do not look at returns, so all we do is minimize cov. We look for
the lowest (ideally negative) covariance terms and combine them to minimize o7. In
terms of our graph, we try to detect the edges with the smallest correlation in the full
graph (in case of no shrinkage/clustering) or a more sparse graph (in case of shrinkage
or clustering). This is what we did for MPT as well, but with MPT there was still a
tradeoff between finding the edges with the smallest value and the return their nodes
provided. Now we just plot the graph and look for the smallest edges, without any
constraints.

The major drawback of MVP, however, is that not looking at r is always suboptimal
from a theoretical stance. From a practical one, there could be reasons why we can
outpredict r. With outpredict we mean that we do not necessarily have to be always
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correct to outperform MVP, as long as we better predict returns than average, we could
expect some outperformance. A second drawback is related to the remarks about the
uncertainty in 3, which are completely analogous to MPT.

d. Inverse variance portfolios (IVP)

Inverse variance portfolios are similar to MVP and also avoid the hassle of return fore-
casting, but they try to provide an answer to covariance misspecification by reducing
the amount of inputs to the optimizer. We simply assume the covariance matrix is
a diagonal matrix, i.e. all covariances are zero, and give weights that are inversely
proportional to the variance of each asset: w; « 1/0;.

1 1
= 71 TN 1
w <z§v:1 z S —) (18)

Inverse variance portfolios are also known as risk parity portfolios. Risk parity [29], pi-
oneered and popularized by Bridgewater Associates, states that if we consider a broad
investment universe (with a wide range of classes such as stocks, bonds, credit-related
securities, commodities, real estate, inflation-protected bonds,...) the correlation over
these classes is typically low, such that we can leapfrog the full covariance estimation
and only look at the diagonal (variance). Inverse variance, if properly implemented
(this hinges on the universe) provides a relatively simple-to-grasp, low-cost and low-
risk portfolio.

Risk parity is thus very simple but crude. It is only a reasonably efficient allocation if
we indeed have a diagonal covariance matrix, and can ignore covariances. Therefore,
on first sight, risk parity neglects diversification benefits. This is only on first sight
because of the way we set this up. In term of our graph, risk parity assumes an asset
manager considers the full graph and is skilled enough to only keep those assets that
are not linked to each other and reduce it to a sparse graph with no links. This is a
pretty heroic assumption. This is an ad hoc, non-systematic approach and completely
hinges on the skill of the manager. HRP takes the attractions of IVP and tries to
remediate this limitation using machine learning (cf. h.), where we rearrange our
non-diagonal covariance matrix in a way that it is quasi-diagonal.

In summary, is there no link between diversification and risk parity? Quite the reverse,
if we are able to learn the full graph and know which assets are sufficiently dissimilar,
inverse variance is the appropriate way to spread risk over these uncorrelated groups.
How we determine these subsets, (1) manually/qualitatively using expert judgement
(like risk parity), or (2) by using quantitative tools like machine learning, that is what
makes it interesting.

e. Maximum decorrelation portfolios (MCP)

Maximum decorrelation portfolios (MCP) were introduced by Christoffersen et al.
in 2011 [31], following a series of developments in dynamic correlation modeling.
Similar to autoregressive variance (such as the generalized autoregressive conditional
heteroskedasticity or GARCH models), researchers developed time-varying correla-
tion models such as Robert Engle’s DCC-GARCH (dynamic conditional correlation
GARCH) or BEKK (Baba, Engle, Kraft and Kroner) models. Christoffersen (2011)
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proposes that with a sufficiently sophisticated treatment of correlation, portfolios can
be constructed as follows:

rrhi)n(wTCW) (19)
where C is the correlation matrix. Hence MCP is similar to MVP where we replace the
covariance matrix by the correlation matrix. Similar to IVP, a maximum decorrelation
portfolio attempts to reduce the number of inputs to the optimizer, but it uses the
opposite assumption. Instead of focusing on volatility and ignoring correlation, the
strategy assumes that individual asset volatilities are identical, such that the covariance
matrix can be reduced to a correlation matrix.

In terms of our graphs, we can say similar things as with MVP. MCP portfolios look
for edges with the lowest correlation. The difference with MVP is that MVP looks
for minimum covariance, or pairwise correlation multiplied with the two individual
variances. MVP therefore sometimes prefers more risky assets if they are negatively
correlated, while obviously preferring low-variance assets if they are more (positively)
correlated. MCP is ignorant for variance and assumes they are identical. Again from
a theoretical stance, this is less optimal, but as we need fewer parameters it can give
us better and more robust results. A quick comparison between MVP with dynamic X
matrix versus MCP with dynamic C matrix makes an important case for MCP [31].

f. Equal risk contribution (ERC)

Equal risk contribution portfolios choose the weights in such a manner that all positions
contribute equal amounts of risk w;[Zw]; to the portfolio risk w” £w. Intuitively, this
may sound similar to IVP, as we expect the weights to be inversely proportional to
their risk. However, ERC takes into account diversification benefits implied by X.
High variance assets with low correlation can have a relatively low risk contribution.
This concept of risk contribution is the very essence of what we intuitively understood
by diversification in the MPT framework. Where ERC differs, however, is how it uses
these contributions. ERC neglects expected returns and just imposes that every asset
contributes to the portfolio risk equally. Therefore, the percentage risk contribution
(%RC) is compared with 1/N in the objective function, and the squared deviation is
minimized.

_ wi[Ew],
BRC: =~ (20)
min (Y (%RC: — )°) (21)

The resulting portfolio is similar to a minimum-variance portfolio subject to a diver-
sification constraint on the weights of its components. The meaning of diversification
in this setting is that diversification is the opposite of concentration. We penalize
concentrations in terms of %RC in our objective function. An alternative could be
to penalize high weights w in our objective function (e.g. a L1/L2 shrinkage on w ),
but these weights do not tell us anything about the graph or our risk sources, and
the portfolio can be well-diversified even if some are relatively large. They are the
product of our optimization, and should not be confounded with the input. In short,
the attraction of ERC is that risk contributions are at the heart of diversification.
The drawback is that the 1/N is arbitrary, and there is no theoretical basis why equal
would be the best, we just want to avoid too high %RC.
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g. Most diversified portfolios (MDP)

Most diversified portfolios were introduced by Choueifaty and Coignard in 2008 in
their paper ‘Toward Maximum Diversification’ [20]. They provide us with a definition
of diversification benefits: it is the reduction in risk between holding assets together
in a diversified portfolio, versus holding them separately in fully-concentrated or un-
diversified ones. Therefore, for any portfolio w, they define the diversification ratio
D(w) as the following ratio:

WTO'
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The numerator is simply the weighted average volatility of the instruments in the
portfolio w, where o is the square root of the diagonal of the covariance matrix X.
The denominator is the portfolio risk or standard deviation. Intuitively, the numerator
ignores the benefits of low or negative covariance terms for portfolio variance (cf. a)
and sets them all equal to one. This would be the risk of a hypothetical undiversified
portfolio: if all correlations are one, the sum of the standard deviations is the standard
deviation of the sum. The higher the risk in this hypothetical scenario compared to
the actual portfolio that constitutes of these same assets, the higher the diversification
benefits. The MDP portfolio simply maximizes D(w) by altering w:

Dvar(w) = (22)

max Dyar(w) (23)

The intuition behind maximizing this ratio is that the denominator makes sure risk
is minimized, while the numerator maximizes individual volatilities (which we can
reasonably assume is proportional with expected return). Indeed, maximizing diver-
sification benefits effectively means minimizing portfolio risk without being ignorant
for returns.

The attractions of MDP are obvious: (1) it provides us with a definition of diversifica-
tion, it (2) minimizes portfolio risk, while (3) not being ignorant for returns. However,
its results are again dependent on the quality of our covariance estimates. Evidence
[37] suggests that it is most sensitive to covariance misspecification.

MDP’s perspective on diversification is quite obvious. Diversification is the reduction
in risk of holding assets together. Notice it is a ‘positive’ definition that focuses
on benefits rather than the disadvantages of concentration (a ‘negative’ definition
assumed in ERC). In terms of our graph, MDP has a rather different interpretation.
The denominator tries to minimize the risk of our portfolio by looking for edges with
small values in the graph (similar to what we discussed before), while the numerator
reduces a scattered graph of islands to one pooled mainland. It assumes all edges
have value one, or intuitively there is only one risk source and all assets are affected
by it, the exact extent determined by their different variances. There is no way to
diversify in such an unfortunate setting. So we just pick the ones with the maximal
variance, because it is reasonable to assume they give us a higher expected return. The
combined portfolio is the optimal tradeoff between these two effects, and maximizes
the difference between the risk in the two perspectives.
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h. Hierarchical risk parity (HRP)

Hierarchical risk parity was introduced by Marcos Lépez de Prado in his 2016 paper
‘Building diversified portfolios that outperform out-of-sample’ [33]. The title gives
much away of the gist of the paper as HRP tries to address three major concerns
of quadratic optimizers in general and Markowitz’ CLA in particular: in-sample it
provides a theoretical optimal portfolio, but out-of-sample they (1) lack stability?®,
(2) show concentrations®® and underperformance®”. HRP applies graph theory and
machine learning techniques to build portfolios based on clustering the covariance ma-
trix. In contrast to CLA, HRP is not prone to the conditioning of this matrix, as it
does not require its invertibility. After delving into the CLA algorithm, its shortcom-
ings and explaining Markowitz Curse, Lopez de Prado introduced a new concept for
diversification: hierarchy. The paper uncovers the root cause for instability, namely
the fact that correlations are based on geometric or continuous relationships, rather
than hierarchical ones. The essential idea behind hierarchical clustering is that not
all assets should compete for allocation in a continuous manner. Some investments
seem closer substitutes to another, and other investments seem complementary to one
another. For instance, stocks could be grouped in terms of liquidity, size, industry or
region, where stocks within a given group compete for allocations. To a correlation
matrix, all investments are potential substitutes to each other. They lack the notion
of hierarchy, and the very root of instability is that weights are thus allowed to vary
freely in unintended (and often concentrated) ways. HRP’s algorithm constitutes of
three steps: (1) hierarchical clustering of the correlation matrix to obtain groups of
similar assets at different levels, (2) quasi-diagonalization, which reorders the covari-
ance matrix based on the groups of (1), and (3) recursive bisection, which recursively
breaks up the covariance matrix into subsets and allocates weights over these clusters
using inverse cluster variance.

1. Hierarchical clustering, and more specifically agglomerative or bottom-up hier-
archical clustering (e.g. Fig. 5 on BEL20), is a form of clustering where we
initially start with every unit being a cluster of itself, and then recursively add
new units or clusters to our initial clusters until every unit falls under a sin-
gle cluster. HRP applies linkage techniques on the correlation matrix. Linkage
means we first transform our correlation matrix into a distance matrix, where
we define a pairwise metric of dissimilarity d;; proportional with one minus
the correlation. Intuitively, distance or dissimilarity is one minus correlation or
similarity. Next, the Euclidean distance ci” between every two assets in this
metric space is taken. The next step is defining the linkage criterion: which
assets will we recursively add to a cluster? If we add two clusters from the
previous step together, will we take the most similar or closest ones (minimum
distance), the on average most similar ones (average distance), or the ones with
the least dissimilar ones (complete linkage)? Loépez de Prado proposes to use
single linkage or minimum distance:

d(u,v) = min(d(us,v;)) (24)
[33] does not provide motivations as to why to use single linkage, but instead
invites the reader to see Rokach and Maimon [22] for a more detailed description

25¢f. Curse of Dimensionality
26¢f. Curse of Diversification
27 As returns are hard, if not impossible, to predict

24



==

NGA  BARBR  APAM  ONIEXBR  UCBBR  COLRBR  COFBEBR  WOPSR  PROXSR  TNETER  ACKEBR  AGSBR  KECBR  SOFEA  UMIBR  ABIBR  GBLBER  SOLBBR  ARGKER  GLPG

Figure 5: Hierarchial clustering on BEL20, the vertical axis is the distance
metric d; ; at cutpoint

of the algorithms we described above, and to experiment with them in the Scipy
library. This is the approach we will take in section  G. and the code.

2. Quasi-diagonalisation means we rearrange our covariance matrix according to
our clusters. If we reorganize X in such a way that highly correlated assets
or similar assets occur together and dissimilar assets are placed far apart, the
largest values of covariance will lie close to the diagonal. This has a useful
property, since we know from d. that inverse variance allocation can be
used for diagonal matrices. Clusters we obtain from subsets of this matrix can
be used to get more robust inverse variance allocations, much in line with what
we discussed in d.. Figure 6 illustrates the difference between an original,
unclustered correlation matrix on the left, and the quasi-diagonalized one on the
right. The interpretation of these plots is that the brighter the color, the higher
the correlation. We can see that the most similar assets are placed close to each
other, creating a bright box in the top left corner. The lower and right edges
are much darker. Moreover, we can distinguish other boxes along the diagonal.
These are our main clusters.

3. Recursive bisection is used in the next step to recursively assign weights over the
tree. We use inverse-vol allocation on two subsets or clusters of our covariance
matrix, and the weights are sequentially determined from root to leaf nodes as
each cluster is bisected until we have a single asset in each cluster. To provide
some intuition, Fig. 7 illustrates how weights could be determined from left to
right?®. First we compare the variance of ING bank (the most dissimilar asset)
with the other cluster, and assign a weight according to inverse vol. Next, we
compare the biotechs Argenx and Galapagos with the remaining assets in that
cluster. We again apply risk parity, and so we continue. We understand that
the assets that are most similar to all other assets in the graph will lie deeper in
the tree. The deeper an asset lies in the tree, the more its eventual weight is a
product of these recursive weights over subclusters. This makes sure assets that

28Remark this is not exactly how traditional HRP works, but this is closer to the cluster-
based ‘waterfall’ approach in [27]. We will extend HRP and make it more similar to this logic
in Appendix 7.
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(a) Original correlation matrix (b) Quasi-diagonalized matrix

Figure 6: Quasi-diagonalization

do not provide diversification benefits get on average lower weights. This is the
most intuitive way to explain recursive weight allocation, but it is not strictly
the recursive bisection proposed by HRP. As Thomas Raffinot remarks in his
paper [36], the original HRP paper (1) treats the dendrogram as equivalent to
its minimum spanning tree®®, and (2) uses only the order of the assets, not the
number of assets in each cluster as implied by the dendrogram. Therefore, in
traditional HRP the single linkage algorithm provides us with an order, and these
split decisions can be visualized by a dendrogram, but the recursive bisection in
HRP does not use this dendrogram. This is visualized in Fig. 8. The solution
to this problem is a simple tweak proposed in the same paper [36]. Another
blatant limitation of single linkage that may have become obvious from the Fig.
7, is that it suffers from chaining. Reading from right to left, we only need a
single observation that is close to an existing cluster to add the whole cluster to
it. As a result some clusters are really large, while others are extremely small
(e.g. ING). In case ING would be a relatively low-risk asset compared to the
diversified pool of other assets, one would end up with a concentrated exposure
in ING. The solution for this problem is using a different linkage criterion, as
proposed before, or using robust single linkage®® [30].

To sum up Hierarchical Risk Parity (HRP) and make the link with our graph, we
can say that graph theory inspired HRP is intuitively the closest technique to our

29 A clustering tree strictly related to single linkage.

30Robust single linkage uses the minimum distance or single linkage criterion, but tweaks
the distance measure. The distance is the larger of the Euclidean distance between two points
and the maximum distance to k neighbours of each of the two points. This makes sure that
we correct for the density of these points, and no isolated island of a point can serve as a
bridge between two mainlands or clusters. Alternative clustering options are also extensively
discussed in Appendix 7.
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Figure 7: Recursive weight allocation BEL20
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Figure 8: Diversification benefits and limitations of HRP, according to Thomas
Raffinot
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Inspiration

What

Solution/Implementation

O
o=
=

Diversification =
opposite of concentration

Penalize concentration in objective:
(1) Penalize high %RC,

(2) Penalize %RC that deviate from
1/N,

(3) Shrinkage on weights in objec-
tive (L1 / L2 type penalty)

MDP

Diversification =

the benefits, or reduction in risk, of
holding assets together in a portfo-
lio

Exploit the measured benefits:

(1) Maximize difference sum
weighted risk with portfolio risk
(maximize diversification ratio),

(2) Penalize adding low-benefit
assets (weighted sum correlations)
in objective,

(3) Naively boost your model to
take more individual risk, while
minimizing portfolio risk

Optimally determine these clusters,
assume cross-cluster correlation is
spurious and use inverse risk to al-
locate between clusters: HRP and
derived methods of recursive weight
allocation over clusters using differ-
ent linkage criteria, clustering al-
gorithms and risk measures (e.g.
HERC by Raffinot [30])

Diversification =

spread risk over many sources,
these determine discrete sets of as-
sets (clusters)

HRP

Table 1: Diversification in standard construction frameworks

starting premise. HRP starts from hierarchical relationships between assets, rather
than geometric ones. This corresponds to the most important similarities in the graph.
In a previous subsection a., we already made the link between clusters and the
sparse graph. HRP provides us with a systematic way to reduce the full graph to a
sparse graph and spread risk over these clusters. It is analogous to the philosophy
behind traditional risk parity, where positions were inversely proportional with risk
and where we ignored (spurious) correlation across clusters. This was achieved through
managerial skill in IVP versus clustering and quasi-diagonalisation in HRP.

i. Overview

In summary, what insights w.r.t. diversification do we take away from the most
tractable construction frameworks in literature, i.e. the variance and hierarchical
clustering-based techniques? This is summarized very briefly in Table 1. We will
project these views on an iVaR framework in the next section.

B. iVaR and diversification
“Make everything as simple as possible, but not simpler.” (Albert Einstein)
What is the link between iVaR and diversification? How can we make a smooth

ride diversified at the same time? From the introduction we know that a diversi-
fied allocation means a more robust allocation, as it is less prone to misspecification
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errors of ‘spuriously precise’ risk and especially correlation measures. Recall that ro-
bustness by design, rather than correction, is vital for rational investment decision
making, especially in times of automated investment solutions where algorithms end
up in live environments. Relying solely on a single objective such as ‘minimize iVaR’
can therefore only yield a mathematical optimum, but in practice it might lead to
biased decisions. Imagine assets with close-to-perfect monotonic growth. These un-
fortunately do not exist, but let’s say we do have an extreme outlier in our investible
horizon in terms of ‘smoothness’. Unrestricted iVaR portfolios will tend to show a
concentrated position in this asset because nothing is preventing it to do so. The easy
way to cope with this issue is hard-coded constraints, which always lead to suboptimal
allocations. Even in less extreme cases an unrestricted iVaR algorithm might prefer
some geographies or industries which will make sense in-sample, but lead to excessive
concentration out-of-sample. For instance, large-cap stocks, industries with matured
cash cows, geographies like US, safe commodities such as gold, and so forth might be
preferred by an iVaR optimizer, while a robust allocation should be spread over many
of these characteristics. So an unrestricted iVaR portfolio might fail in practice, but
what about in theory ?

In theory, we want to achieve three things: a portfolio that (1) minimizes stress (or
minimizes iVaR), (2) exploits diversification benefits (risk reduction by combining as-
sets) and (3) avoid concentrations (in terms of individual weights or risk contributions).
This and Table 1 give us hints about how we can change the minimum iVaR objective
to account for (2) and (3).

In what follows we will mirror the different perspectives we took in ~ A. on an iVaR
framework. First, we define a measure of association in an iVaR framework: coiVaR.
What is the risk of a portfolio of two equally weighted assets versus the sum of the
two individual risks? This gives us a ratio between 0 and 1 which tells us how useful it
is to add assets to a portfolio based on a pairwise assessment with the assets already
in the portfolio. 0 means adding the asset to the portfolio will not increase portfolio
iVaR. Given a non-zero expected return of this asset, this would clearly increase the
efficiency of the portfolio. 1 means adding the asset to the portfolio increases iVaR
as if we would just buy more from the assets we already have. In this case, for many
obvious reasons (transaction costs, practical reasons, etc.) adding this asset will not
improve our portfolio’s performance, nor its robustness.

On the other hand, this pairwise assessment might make concentrations worse, for
instance if our horizon is ill-specified. Imagine we start from a very limited horizon —
limited not in number, but imagine they are all closely linked to a similar source in
the graph. In such a case, average coiVaR would be high, and minimum iVaR would
lead to concentrations in the few assets with lowest iVaR. Now we could penalize for
high coiVaR assets, but we would consequently add few or no assets to the minimum
iVaR portfolio, not solving the issue and possibly making concentrations worse. It is
clear that the idea of coiVaR is interesting, but we need something more.

That is why we tweak the coiVaR measure a bit to redefine a diversification ratio. The
diversification ratio D;v.r(w) is not a function of two assets, but of the weights of a
portfolio w. Rather than a pairwise assessment, we check the risk of the portfolio in
iVaR terms, compared to the risk of holding the instruments individually. Hence, all
we do in this subchapter is a simple mapping of two essential concepts of diversification
on iVaR: correlation and Dyar(w) become coiVaR and D;ver(w). Indeed, we try to
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make things as simple and intuitive as possible, while trying not to be oversimplistic.
Next, we use these concepts in our objective to optimize for both iVaR (MIP, IIP) and
diversification (MDIP, HiVaR, PiVaR and MVMIP).

a. coiVaR and diversification ratio D;y,g(w)

The first measure we introduce to construct diversified iVaR portfolios is coiVaR.
coiVaR is a pairwise association measure between assets which compares the risk of
an equally weighted portfolio of asset A and B with the risk of holding A and B
individually:

iVaR(A + B)
iVaR(A) +iVaR(B)

cotVaR(A,B) = (25)

This gives us a pairwise measure of potential diversification benefits, much like an
inverse diversification ratio for a universe with two assets. As said before, if iVaR is
subadditive and non-negative, coiVaR ranges between 0 and 1,

0 <coiVaR(A,B) <1 (26)

where adding low coiVaR assets to an existing portfolio will not increase overall iVaR
much, and vice versa. The importance of the subadditivity (or a fortiori convexity) of
our measure here can not be overemphasized. That is why we provide an argument
for iVaR’s subadditivity in Appendix 3. Clearly if iVaR would not be subadditive
this ratio could be any number exceeding 1, and would be rendered useless for further
analysis or optimization.

Low coiVaR assets essentially means that if we combine two time series they are close
to monotonic growth, while the individual ones are not. This might sound counterin-
tuitive. In practice, it means the drawdowns of A and B are lowly correlated in terms
of size, in terms of timing of their occurrence and in terms of the time to earn them
back. An extreme example might help: when one asset A shows relatively small draw-
downs that takes ages to recover, temporarily adding a volatile asset B that can bring
the portfolio above water more quickly, and is not correlated with the drawdowns in
A, will be a great choice to lower portfolio iVaR. Mathematically, coiVaR is a very
simple approach to capturing both the correlation process between the returns series
and their volatility processes®!.

Analogous to correlation we can now estimate a coiVaR matrix by assessing all two-
by-two coiVaRs. This matrix can be used for many portfolio analysis ends, such as

31For diversification benefits, the returns might be lowly (ideally negatively) correlated, but
the volatility might be negatively correlated as well, such that drawdowns are correlated with
more volatility or — similar to option pricing intuition — higher odds of recovering fast. In
principle one could try to model the correlation structure of those returns and dispersion for
every two assets. Essentially coiVaR captures a similar quantity. coiVaR is simpler and more
crude than more elaborate models, but not necessarily an approximation. In the eloquent
words of Emanuel Derman: ‘Handwriting and typewriting are two ways to express ideas. But
one is not an approzimation of the other. Using a GPS system or stars to orientate are
two ways to get to a destination. One might be more sophisticated than the other, but the
one is not an approxrimation of the other’, as long as you in all cases achieve what you want
to achieve: convey information, get to your destination or ‘decorrelate’ returns as well as
time-under-water.
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weighted average portfolio coiVaR as a measure of concentration or as a similarity
matrix for clustering:

1 cotVaR12 ... cotVaRi N
C— cotVaRs 1 1 27)
cotVaRn1 1

It is clear that as an analysis tool coiVaR can be an interesting addition to our toolbox.
However, in portfolio optimization it might prove insufficient. Firstly, we have the
issue of inevitable concentrations when we apply a coiVaR penalized algorithm on
ill-specified horizons. Therefore, coiVaR does not suffice to get all three properties
of a diversified iVaR portfolio. Secondly, a matrix with N(N-1)/2 unique coiVaRs
raises new versions of old problems, such as estimation error, stability and issues of
dimensionality. Therefore, a second very simple measure of diversification is coined
the iVaR diversification ratio:

ZN wiiVaRi
Diva == 28

var(w) iVaRy(w) (28)
Divaer can be seen as an iVaR analogue of D,qr, where we simply replaced volatility
by iVaR. It compares weighted average iVaR of a portfolio with portfolio iVaR.

b. Undiversified iVaR: MIP and IIP
The initial optimization problem we start from is the minimum iVaR portfolio (MIP):
w =min(iVaR,(w)) (29)

The resulting portfolio w promises us the smoothest ride, i.e. by combining assets in
such a way that their combined time series is closest to monotonic growth. However,
we do not impose any hard-coded constraints on maximum weights, industry exposures
and so forth, which makes it prone to concentrations. This is nothing but a potential
overfitting problem, where few smooth paths in-sample are used to cause relatively
high weights out-of-sample. So again the question is how we can prevent the MIP
from overfitting by tweaking the objective, rather than by imposing constraints. We
firstly propose to always keep track of diversification measures when constructing
portfolios: the so-called Herfindahl index (sum of squared weights, see below), Dyar
and D;v.r. If after running the optimization excessive concentration exists, we would
have to rerun the optimization with additional constraints, concentration penalties or
by adding D into the objective. However, in times of roboadvisory and automated
investment solutions, we cannot or do not want to manually assess diversification and
have to rely on the model being diversified by construction. Possible answers to this
question are given in C..

Before delving into these models, we briefly introduce another mirrored concept of
what we have covered before, an inverse iVaR portfolio (IIP):

1/iVaR, 1/iVaRn
SN/ivar:) T N1 /iVaR,)

= ( (30)
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Inverse iVaR is extremely naive, because it is in the combination of assets that the
portfolio forms smoother paths. It ignores this fact completely and just picks the
assets with individual low-iVaR paths. Nevertheless, IIP can be calculated really
quickly without any solver and is closer to MIP than e.g. EWP or random starting
weights. IIP initiated optimization allows us to speed up further solving, which is
especially important in recursive algorithms like the hierarchical allocation. Moreover,
IIP can serve as another very transparent benchmark.

c. Diversified iVaR portfolios: MDIP, HiVaR, PiVaR and MVMIP

In this subchapter, we will briefly describe the objective functions of four diversified
iVaR portfolios: most-diversified iVaR portfolio (MDIP), Hierarchical iVaR portfolio
(HiVaR), Penalized iVaR portfolio (PiVaR) and maximum-variance, minimum-iVaR
portfolio (MVMIP).

The most-diversified iVaR portfolio (MDIP) maximizes the iVaR diversification ratio:
muE}X(DiVaR(w)) (31)

The idea is that when smooth portfolios can be created from rough individual paths,
we are truly diversifying risk in the three dimensions that iVaR measures. Identically
to the MDP intuition, the denominator pushes the solution towards the MIP, while the
numerator pushes the weights away from concentrated low-iVaR positions. This is the
most intuitive answer to our three criteria: (1) the denominator assures a smooth ride,
(2) the maximized difference (or risk reduction) between numerator and denominator
makes sure we exploit diversification benefits, while (3) the numerator also pushes the
weights away from individual concentrations.

Hierarchical iVaR portfolios (HiVaR) spread out portfolio weights over clusters in-
versely proportional to cluster iVaR. The steps are the following:

e Step 1: Hierarchical clustering on correlation matrix (HiVaR-v and HCAA-iv)
or coiVaR matrix (HiVaR-i and HCAA-ii)

e Step 2: Selection of the optimal number of clusters using the Gap index (cf.
Appendix 5) in case of HCAA.

e Step 3: Top-down recursive division into subuniverses, determining MIP for
each, and following an inverse portfolio iVaR allocation of each cluster: w1 =
iVaR:1/(iVaRy + iVaR2), w2 = 1 — w1, where iVaR; is the portfolio iVaR of
cluster i using MIP weights for that subuniverse. We follow the shape of the
dendrogram in case of HCAA-v and HCAA-i, and simple recursive bisection in
case of HiVaR-i and HiVaR-v.

We borrow from the intuition we developed in Table 1 and determine clusters of
assets that reflect similar sources of risk, using both correlation (-v) and coiVaR (-i)
matrices. Next, we split these clusters recursively, each time finding the MIP for these
subuniverses. Then we give a total weight to that cluster inversely proportional to the
portfolio iVaR of the cluster using these MIP weights. The use of the minimum iVaR
weights makes sure that the portfolio iVaR is reduced by combining assets, forcing
smooth trajectories, while the recursion itself makes sure that the most similar assets
that lie deeper in the tree will have on average lower weights, forcing diversification.
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Penalized iVaR portfolios (PiVaR) measure the concentrations of assets in terms of
iVaR and penalize these explicitly in the objective function. Generally, we could define
PiVaR as,

min(iVaR(w) + AC(w)) (32)
while a logical choice for C would be the weighted average coiVaR:
N N
C(w) = Z Z wyw;cotVaR(i, j) (33)
i g

This portfolio implements the third idea behind diversified iVaR portfolios and uses
the intuition behind penalizing concentrations from Table 1. It is natural in a min-
iVaR framework that we do not use correlation but coiVaR for this penalty. Moreover,
PiVaR is superior to a simple L1- or L2-like shrinkage of the portfolio weigths, since
coiVaR tells us something about shared risk sources, while weights do not. However,
its major disadvantage (which it shares with traditional penalized methods) is that
we need to determine an amount of penalization as implied by a hyperparameter .
This parameter can either be determined through cross-validation, i.e. by determining
which A has best out-of-sample diversification and performance haracteristics, or it
can be set by requiring some minimum level of diversification (e.g. a min D;v4r) in
the solution.

Finally, we introduce the maximum variance - minimum iVaR portfolio (MVMIP),
which minimizes iVaR while maximizing for variance. MVMIP can be seen as a hybrid
between MIP and MDP.
Zf W;0;
max(-—=2t——

w iVaR,(w) (34)

Recall that we argued that MDP requires the numerator to be proportional with
expected return in order to be effective. There we argued that this was the extent to
which symmetric risk measures, in contrast to our remarks in ~ A., are actually very
useful. In that sense our discussion of MDIP still misses an important point: what is
the predictive power of an asset’s individual iVaR for its expected return and what is
the relationship between portfolio iVaR and portfolio return?

Figure 9 illustrates the average return, measured volatilities and measured iVaR for all
the individual S&P500 stocks between 2015 and 2020 in panel (a) and (b). Panel (c)
and (d) show simulated portfolio returns versus vol and iVaR characteristics for 10,000
random portfolios constructed from these stocks. It is clear from (a) that volatility
is a symmetric risk measure, such that high individual risk corresponds with both
higher and lower returns in panel (a). From panel (c) we can say that if we are on the
efficient frontier (top half, and top left edge of the graph) we will indeed find a higher
expected return in exchange for additional volatility. MPT will find the portfolio that
maximizes the ratio of the two. Note that the color indicates the SR.

This is not the case for iVaR. The cloud with return-iVaR tradeoffs between individual
assets in panel (b) is clearly not symmetrical. We can see that the highest return
assets generally have low iVaR, while high iVaR assets have the lowest returns. The
10,000 simulated iVaR portfolios in panel (d) tell us that the return-iVaR tradeoff
is maximized when iVaR is minimal. The elliptic opportunity set is rotated, such
that more of the higher returns correspond to lower iVaR. That is why we need to
be careful with MDIP. It will maximize diversification benefits in iVaR terms, and
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push MIP away from concentrated positions, but the argument that the numerator
maximizes risk because this is proportional with expected return is no longer valid.
For variance, however, this is the case. That is why we introduce MVMIP, which
minimizes iVaR in the denominator and pushes MIP away from concentrations in the
numerator using volatility.

(c) Vol portfolio cloud (d) iVaR portfolio cloud

Figure 9: Asymmetry of drawdowns and return shown for S&P 500

In conclusion, there is no reward in managing portfolios without taking risk, but
there is no such thing as a single risk. There are good risks (symmetrical or two-
dimensional risks), and there are bad risks (downside risks). If the rational investor is
on the efficient frontier, (s)he is rewarded for taking on additional ex-ante volatility,
because (s)he has correctly identified that the investment can go in both ways at that
point in time. However, taking on additional iVaR is not rewarded since (s)he is
simply picking stocks whose expected®?losses are higher®>. That’s why we also test
the MVMIP portfolio. In essence because we minimize iVaR while at the same time
(1) using the useful property that the average vol in the numerator is proportional
with expected return in the efficient solution region enforced by the denominator,
and (2) we need not specify covariances. From an MDP perspective it inherits its
attractions while (1) using a more realistic risk measure and (2) avoiding covariance
estimation. However, we should be wary of the fact that the unit of our numerator and
denominator are not the same anymore. Volatility is expressed as a percentage return,

32Ex-ante provided sufficient persistence in the loss measure, which is likely the case with
a by construction dynamic measure such as iVaR.

331t is still unclear where this fits in into financial theory and utility theory, but clearly
volatility indirectly provides utility — although U = E(r) — Ao — because o can be written
as a function of E(r) in the efficient part of the feasible region. iVaR, or drawdowns in general,
do not seem to provide this ‘indirect utility’. Anecdotally, ‘volatility is a PM’s best friend and
enemy’, for iVaR we could drop the friend.
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while portfolio iVaR is a percentage drawdown. This underscores the importance of
proper care® in order for the solver not to ‘game’ this conceptual mismatch.

C. Approaches and algorithmic considerations: practi-
calities and optimalities

So far we have only delved into the objective functions and their intuitions. In terms
of implementation there are many approaches and algorithmic considerations (and
complications).

a. Generic nonlinear programming approach

Here we directly utilize a nonlinear programming solver such as Scipy optimizer to find
the maximum Sharpe ratio, maximum Dyq,, Diver and so forth. We can for instance
use (reduced) gradient algorithms and (quasi) Newton algorithms such as the Newton-
CG (conjugate gradient) solver in the Scientific Python (Scipy) package. Moreover,
we can use sequential methods for calculating gradients and finding optimal weights,
such as the SLSQP algorithm. The advantage of this generic and direct nonlinear
programming approach is that it has essentially no limitations in objective function,
which allows for more easy implementation and experimentation with objectives®®.
The disadvantage is that, because of the lack of mathematical rigour in defining any
nonlinear objective function, in some cases>® the problem might become non-convex
such that there is no optimality guarantee. By applying some more mathematical
rigour (see below) we can obtain such an optimality guarantee and avoid numerical
difficulties inherent to the more naive direct methods.

b. Formulation as a convex quadratic problem

The prototypical example of a convex quadratic programme (QP) is the mean-variance
optimization we already discussed before:

Maximise r*w — %v wli'yw

s.t. Aw > b (35)
efw=1

where the objective function is the same one as Eq. (11), the first constraint matrix A
and bounds b can be used for additional linear constraints on w, and the second makes
sure that the weights sum up to one as e is a vector of ones with as size the length of the
weight vector. The other classical variance-based portfolios can easily be obtained by
tweaking this objective to, for instance, minimum-variance, maximum decorrelation,
etc. Moreover, Appendix 8 illustrates that (35) corresponds to a maximum Sharpe
ratio portfolio for a certain optimal level of risk aversion A However, solving the
programme (35) still requires inputting A, e.g. in a sequential procedure (which has
the limitations of a.).

34Like proper standardization of inputs when e.g. applying MVMIP to different horizons.

35i.e. small tweaks instead of defining a whole new MILP problem (see below).

36For instance when expected returns are all negative in the SR approach and the objective
function can never assume positive values.
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Alternatively, we can define the maximum Sharpe ratio portfolio literally as:

I‘TW

vwIywT
s.t. Aw > b

T
ew=1

Maximise

(36)

which is not a standard QP any more. We can now essentially do two things: (1)
factorize ¥ as in [10] or (2) use auxiliary variables as in [25]. The second approach
reduces (36) to the following problem:

Minimize g’ g

s.t. rTg =1 (37)
Ag—-Cb>0
e’'g— (=0

which is essentially a minimum variance problem on scaled weights with additional
constraints using the auxiliary variable ( = g/w (see proof based on [25] in Appendix
9). This formulation allows us to also determine the optimal MDP ratio and weights
in a similar manner where r, expected return, is replaced by the volatilities o.

Let us now introduce slightly more formal formulations of the iVaR problems. The
minimum iVaR portfolio (MIP) minimizes the residuals with regard to monotonic
growth, whose expected value we have called iVaR:

Minimize v’ w
st. my >m
m-—tw=r (38)

T
ew=1

L <w <

where t are pre-estimated simulated trajectories, m is the problem variable that mea-
sures monotonic growth, r is the problem variable that measures the residuals w.r.t.
monotonic growth. my is a simple transformation of m where we shift the index by
one. Therefore we enforce in the first inequality that m at any date of the trajectory
is equal to the running max or high-water mark. Notice that the average or expected
%I‘TW for the optimal w™* and trajectory date size T corresponds to the iVaR of the
portfolio.

Similarly, the most-diversfied iVaR portfolio can be formulated as:
iT

Maximize ——

r’w

s.t. my > m

m-—tw=r (39)
efw=1
I <w<u
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where i are the known, pre-estimated individual iVaRs. This problem is clearly not
an LP, but a linear-fractional programming problem (LFP). The constraints for this
problem have to restrict the feasible region to those w where r”w is strictly positive.
This is clearly the case because our denominator corresponds to the portfolio iVaR
which is strictly positive per our definition of m and r in the constraints. To solve
(39) we require a variable transformation to translate the problem into a standard LP
program. We first use a variable transformation called the Charnes-Cooper transform
[4] that holds if the feasible region is non-empty and bounded:

! w
I'TW 1 (40)
¢ =

r’'w

y =

such that w = %, i.e. the scaled weights. Now the problem can be reformulated as:

o . T
Maximize i" y

s.t. my > m

(m—ty =r(¢
e'y=¢ (41)

rTy:1

(L <y <u(

¢>0

Analogously, the maximum-variance minimum-iVaR (MVMIP) portfolios can be com-
puted using (41), setting i equal to the vector of individual volatilities.

Finally, the penalized iVaR portfolio (PiVaR) can be formulated as:

L T T
Minimize r* w + A\w” Cw

st. my >m

m-—tw=r (42)
eTw=1
L <w<u

where C is our pre-estimated coiVaR matrix and the other variables (r, w, m and t)
are identical to the previous problems.

Now that we have all the necessary mathematical formulations®” we can use non-

generic solvers such as the mixed-integer linear and quadratic (MILP/MIQP) solver
MOSEK, a package which will allow us to check the optimality of the solution.

37Note that the hierarchical portfolios are just a recursive use of (38) over clusters
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D. Overview

Name (Abbreviation) Risk | Similarity | Objective
Modern Portfolio Theory (MPT) o p max,, (SR(w))
Minimum Variance Portfolio o p min,, (wTEw)
(MVP)

Equally-weighted Portfolio None None w; =1/N
(EWP)
T
Inverse-variance Portfolio (IVP) o None w; = Zal
i
Equal Risk Contributions (ERC) o p min,, (3, (%RC; — 1/N)?)
Most decorrelated Portfolio o p min,, (wT Cw)
(MCP)
Most diversified Portfolio (MDP) o p maz .y (Dyar(w))

Table 2: Overview variance models

Name (Abbreviation) Risk | Similarity | Objective
Hierarchical Risk Parity (HRP) o p inverse o - inverse cluster o
Hierarchical iVaR - variance iVaR P MIP - inverse portfolio iVaR
(HiVaR-v)
Hierarchical iVaR - iVaR (HiVaR- | iVaR coiVaR MIP - inverse portfolio iVaR
i)
Hierarchical Clustering-based Al- o P inverse o - inverse cluster o
location - variance (HCAA-v)
Hierarchical Clustering-based Al- iVaR cotVaR MIP - inverse portfolio iVaR

location - iVaR (HCAA-i)

Table 3: Overview hierarchical models 3*

Name (Abbreviation) Risk Similarity Objective
Minimum iVaR Portfolio (MIP) iVaR None min,, (1VaR(w))
Inverse iVaR Portfolio (IIP) iVaR None w; =1/iVaR;
Most-diversified iVaR Portfolio iVaR None maxy, (Divaer(w))
(MDIP)
Penalized iVaR Portfolio (PiVaR) | iVaR coiVaR miny, (1VaR(w) + C(w))
Max-var  min-iVaR  Portfolio | iVaR None maz, (wl Sw/iVaRy)
(MVMIP)

Table 4: Overview iVaR models
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III. Model construction and comparison

“My imagination has always been much broader than my skills.” (Freeman Dyson)

Now that we have covered the different models in our model set, we will construct
and compare them on real-world data. Firstly, we run some shorter experiments for
the full model set on a smaller universe, the 30 stocks of the DOW Jones Industrial
Average. Then, we select a large universe of ETFs and assess the diversified iVaR
portfolios in more detail. Each time we run the model set over multiple periods and
use the Hansen bootstrapped model confidence set (MCS, [26] and Appendix 10) to
test which models significantly out- or underperform out-of-sample (OOS) in terms of
(1) performance, (2) risk and, importantly, (3) diversification measures.

A. Backtesting on the DJIA using nonlinear solvers

a. Data

Our first experiments are done on the DOW Jones Industrial Average (DJIA) using
its constituents on the 1st of Jan 2020%°. Data is obtained from Thomson Reuters
Eikon for the previous 5 years or approximately 1250 daily observations per asset.
In the following backtests we use a recursive window approach to update portfolios
on a monthly basis from 2017 on, with no forward-looking biases?®. Each month of
observations is added to the sample after rebalancing. Note that rebalancing and
reoptimization happen with the same monthly frequency in these experiments*!, and

transaction costs are neglected for now?2.

b. Results

— A first glance at the portfolios

To get a sense of how these portfolios look and differ, we firstly run the model set
over the full sample and obtain the following weights (Table 7 and 8 in Exhibits
VL.). It is clear that traditional MPT portfolios are prone to high concentrations
(Table 7, in bold), which might be indicative of the overfitting and misspecifi-
cation issues we discussed before. Similar remarks can be made for MVP. The
weights are more spread out for HRP, MDP and the other more naive portfolios.
Since the latter drastically underperform (see below) this might come down to

39 As such the backtests are not taken point-in-time, such that comparison with DIA is
complicated by survivorship biases. However, comparison across models remains valid.

40Meaning we use a 2-year offset for our recursive window to avoid overfitting the short
window in the beginning and end up with instable results for all portfolios.

410bviously this is an experimental set-up and the rebalancing frequency is an important
strategic parameter for investors. Fixed monthly rebalancing is not optimal and would need
to be accounted for in practical applications. We should consider time versus threshold rebal-
ancing [32].

42Therefore giving a positive bias to instable methods with high turnover for each rebalanc-
ing.
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overdiversification. We notice some high individual weights for HCAA as well,
which can be explained by very small cluster sizes in a limited horizon*3.

The iVaR portfolios are generally more diversified, although the minimum iVaR
portfolio seems to prefer some individual low-iVaR paths, such as PG**. Again
we notice that variance-clusters®® result in higher weight concentration (in JNJ*¢).
PiVaR seems to be the most concentrated iVaR portfolio, which is related to
the aforementioned fact that the additional penalty for similar positions might
be counterproductive from a diversification perspective.

Table 9 shows the D4 and D;v.r of the respective portfolios. It is clear that
from both perspectives MPT is the most concentrated portfolio. As we expected,
MDP and MDIP offer the highest D,qor and D;vqr respectively. However, one
table of average D ratios does not tell us much. Let us therefore see how this
generalizes over multiple periods in a dynamic backtest.

— Backtests

Table 5: Overview portfolio monthly OOS performance

Return (%)  Volatility (%) Sharpe Dyar Divar
MPT 0.44051™ 0.884687 0.497930 1.240483 2.200563
MVP 0.20133 0.630451™M 0.319352 1.369099 2.381367
MIP 0.35042 0.718709 0.487567 1.370251 4.236785
IVP 0.23545 0.694178 0.339184 1.391277 3.365166
1P 0.29515 0.731306 0.403592 1.364977 3.417444
HRP 0.25491 0.683379M 0.373014 1.402867 3.380617
HiVaR-i 0.25040 0.757109 0.330732 1.372132 3.274569
HiVaR-v 0.27627 0.738558 0.374071 1.373516 3.360227
HCAA-v 0.30818 0.801462 0.384525 1.276088 1.630977
HCAA-iv 0.29604 0.752568 0.393384 1.331814 1.885577
HCAA-ii 0.36341 0.739866 0.491188 1.340989 2.987645
MDP 0.34270 0.686219M 0.499401  1.448595M 3.863265
MDIP 0.42846™M 0.777709  0.550936™ 1.390421  5.555551™M
MCP 0.35447 0.713991 0.496474 1.443159 3.827174
EWP 0.26518 0.743198 0.356814 1.381726 3.487878
ERC 0.25797 0.706866 0.364952 1.397043 3.571168
PiVaR 0.35734 0.722096 0.494873 1.372388 4.292657
MVMIP 0.43428M 0.780791  0.556201™ 1.364052 4.424851

h M

1 Items indicated wit are in the Mgy

2 Items in bold are worst performers, while items in italics are best-in-class

Table 5 shows the simple average of monthly OOS performance metrics of our
strategies over the simulated 36 months. From a pure return perspective MPT is
the superior model, while the Mgy includes MDIP and MVMIP as well. This

431In this case, the concentration is due to another type of overfitting (cf. Appendix 7)
linked to individual low vol, low correlation assets (here JNJ) resulting in small clusters. This
also makes correlation-based HCAA instable over multiple horizons (cf. infra). The linkage
criteria also has an important impact on this. In these tests we used average linkage which
proved more robust than e.g. single or complete linkage over multiple periods (cf. Appendix
7). Nevertheless, correlation-based clustering in the HCAA context was very instable due to
our limited horizon and the instability of the similarity matrix itself.

44Proctor Gamble

45i e. now using iVaR allocation for intracluster weights, while using correlation as similarity.

46 Johnson & Johnson
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can also be seen in Figures 12-14 in Exhibits VI.. Clearly, MPT is the only
variance portfolio that is competitive in terms of returns. However, looking at
diversification measures such as the sum of squared weights (Herfindahl index,
[9]); Dvar and D;ver we again find that MPT is by far the least diversified
portfolio. Outperformance compared to other variance portfolios is most likely
due to taking concentration risks, and would disappear when accounted for
excessive turnover, i.e. transaction costs. The MCS for volatility suggests MVP
as the superior model, while MDP and HRP are also in the Mggy. This means a
minimum risk investor who picks volatility as his measure can pick any of these
models and will obtain statistically insignificantly different volatility. However,
since variance can be written as a function of expected return in the efficient
part of the feasible region, the global minimum variance problem corresponds to
a minimization of returns. Interestingly MPT is the most risky strategy w.r.t.
volatility. Additionally, the difference between iVaR portfolio volatility is small.
In terms of the Sharpe ratio, MVMIP is the preferred model, while MDIP is also
in the Mgg. MVP minimizes the Sharpe ratio, while the max SR objective in
MPT leads to an average SR out-of-sample, indicating the max SR in-sample
does not generalize well 00S*7.

In terms of diversification measures, MPT is the most concentrated portfolio
w.r.t. variance, while HCAA correlation-cluster overfitting leads to the highest
iVaR concentration. The average diversification ratios of our different allocation
strategies over the full backtest is summarized in Figure 11. As we ideally
want high D ratios with low individual weights, we generally desire sharpe V
shapes in this plot, while red flags should be raised when it flattens out for a
certain portfolio. In one glance we can tell MDIP, MDP and MVMIP portfolios
are generally well diversified, while variance-based HCAA and MPT portfolios
suffer from concentration. Finally, it is no surprise that the MCS shows MDP
and MDIP are the most-diversified portfolios for the D,sr and D;yv.r measures
respectively, while no other models are in their respective My .

— Robustness and date breaks
We included similar performance tables to Table 5 in Exhibits VI. over individual
years. Obviously, these small subsamples are of limited use given the small initial
sample. Nevertheless, it splits up model performance for good versus bad market
environments. Generally the relative performance of the models stays the same
as we discussed over good market years (2017, 2019) and bad ones (2018).

c. Conclusion

In short, MVMIP and MDIP outperform on an overall basis, being in most model
confidence sets (i.e. outperformance in terms of both return, risk and diversifica-
tion). MPT is the only variance method competitive on returns, but this was linked
to concentration levels beyond any iVaR model. PiVaR seems to be the least useful
viewpoint, as a weighted average coiVaR penalty increases weight concentration sig-
nificantly for a marginal gain in D;v,r. Cluster algorithms using correlation lacked
stability which interestingly makes coiVaR, as a dynamic measure more persistent by
construction, a better choice for hierarchical iVaR portfolios. However, these conclu-
sions are only preliminary given: (1) the short time sample, (2) the small universe and

47This is clearly because, although offering superior returns, the max SR strategy has highest
OOS volatility.
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(3) no optimality guarantee with the generic solvers?®.

B. MIP, MDIP, MVMIP or HiVaR? Which perspective
prevails using the MILP solver?

a. Data

We constructed a diversified data set of 90 exchange-traded funds (ETFs), including
54 stock, 31 bond and 5 commodity ETFs from 1999 up to 2016. Importantly for
this dissertation, the lower correlations between these asset classes should allow the
competing models in the set to exploit more diversification benefits than for equity
index constituents only. In the following backtest we simulate 10 years of rebalancing
from 2006 to 2016. We included the 2008 market collapse to see which algorithm
smartly diversifies and outperforms during market turmoil, without overdiversifying
or resorting to a flight to safety in concentrated low-risk assets, missing the recovery
afterwards. We again update portfolios on a monthly basis via a recursive window,
i.e. we sample from our first observation up to the date where we reoptimize. We now
include a variable transaction cost in the formulation of the MILP problem.

b. Results

Figure 10 highlights the power of diversification in an iVaR framework, i.e. from the
combination of different assets from different asset classes one can create a genuinely
smooth ride. The different iVaR perspectives are indicated in red, while a benchmark
fund is given in blue®®. In this large universe MIP is able to construct portfolios
that very well approximate monotonic growth. It is very able to do so, but it does so
through (1) relative concentration and (2) missing out on returns. The other portfolios
are essentially a tradeoff of smoothness with additional return (either through iVaR

or volatility boosts, or larger equity exposures as a consequence of clustering).

During the initial economically benign years of 2006-2007, the iVaR portfolios seem to
miss out on the best performing securities (i.e. equities), and overdiversifying across
bonds and commodities. During the market turmoil of 2008-2009 MIP, MVMIP and
MDIP profit from large bond and commodity exposures. During the rapid recovery
of the markets after the GFC HiVaR seems to outperform because of its large equity
cluster®®. In summary, our different models naturally all have periods where they
outperform, although MDIP is the most consistent outperformer.

This can be seen from Table 6. MDIP offers competitive overall return with HiVaR,
which clearly only outperformed in the second half of the simulation. Moreover, HiVaR
is twice as volatile as MDIP, and compared to HiVaR the tail characteristics of MDIP
returns are much closer to those of safe haven MIP (see Fig. 22).

48Given our large model set, a computationally demanding solver, and the vast number of
iterations over clusters, more extended backtests over longer time windows and on a larger
universe were computationally infeasible on a desktop computer. The following paragraphs
will zoom in on the iVaR perspectives and use a longer and broader universe but on a reduced
model set.

49More comparable benchmarks are plotted in Fig. 19.

50Tnstead of MIP on the full universe including bonds and commodities, we recursively use
MIP over clusters, where equities are likely to form relatively big chunks of assets in this
universe.
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Table 6: Monthly OOS performance ETF universe

Return (%) Volatility (%)  Sharpe Dyar Divar
MIP 0.204503 0.308152M 0.728379 1.00525 4.36087
MDIP 0.323616™M 0.686290 0.597445 1.03708 5.67482M
MVMIP  0.252064 0.410271 0.803194™  1.01888 5.43738M
HiVaR 0.332677™  1.342111 0.388532 1.05305M*  3.11179

Items indicated with ™ are included in the Mggo,

In terms of diversification, all portfolios seem to be concentrated from a variance
perspective. Given their low out-of-sample portfolio volatility, this means they are
investing in low OOS volatility assets, therefore not exploiting any diversification ben-
efits from a traditional portfolio theory perspective. At the same time the portfolio
risk in iVaR terms is only a small fraction of the individual trajectory iVaRs. This
implies that, on average, trajectories are combined to minimize iVaR rather than low-
iVaR concentration. However, these are again only average D ratios. From the V-plot
for this universe (see Fig. 20), we notice MIP has high weight concentration in low
iVaR assets at least during some periods®*. Taking a closer look at the portfolio con-
stituency of MIP we notice high individual exposures to commodities and bonds during
the GFC®2. This proves to be optimal during the crisis, but also explains why MIP
underperforms during the bull market thereafter. It is clear that from a diversification
perspective MDIP does the best job with an especially low Herfindahl index and high
Divar ratios, while providing the most consistent and competitive returns afterwards.

Robustness checks in the form of date breaks are included for 3 year subperiods in
Exhibits VI.. We have already briefly discussed the relative performance of our models
over time, and the statistics in Table 12 confirm our view with MDIP being the most
consistent outperformer.

c. Conclusion

Over an extended period of time and a large multi-asset class universe the most-
diversified iVaR portfolio outperforms the other perspectives both in terms of consis-
tency and size of returns, risk and especially diversification characteristics. Initially, it
underperforms MIP and MVMIP because it pushes for higher iVaR assets in a down
movement, but the underperformance is largely compensated for in the bull markets
afterwards. MIP does a great job in realizing consistent returns and monotonic growth.
This results in capital preservation in bear markets, which is then capitalized upon in
the years after. However, it does this through relative concentration and ignorance for
excess returns during these bull markets. The other portfolios leverage conceptually
little tweaks to MIP to profit from these bullish periods. Clustering-based HiVaR
applies MIP to subuniverses or clusters, in this case largely corresponding to the as-
set classes. As a result, during the market crash it goes sideways, as a middle way
between commodity- and bond-driven increase of MIP and the equity-induced implo-
sion of the benchmark. Afterwards, it provides the most expressed excess returns of
all strategies. However, it does so with high volatility and low iVaR diversification,

51Exhibits VI. also includes a breakdown in multiple subperiods (including the downturn
versus recovery) which clearly accentuates this phenomenon.

52j e. a flight to safety as discussed in Appendix 11.

44



effectively giving away most of the attractive properties of the iVaR framework by in-
troducing subuniverses. MVMIP is in the beginning of the simulation almost perfectly
aligned with MIP, where alteration of MIP weights stays out during decline because
overall high volatility does not push individual weights away from the MIP allocation.
Afterwards, the relatively high-vol assets clearly do not necessarily correspond with
high-iVaR assets, i.e. during the up movement, and large deviations between MIP and
MVMIP exist. MVMIP is in all its characteristics (return, risk and diversification)
literally a hybrid between MIP and MDIP. Apart from a maximum Sharpe ratio, it is
the ‘in-between’ model in many respects.

IV. Conclusion, limitations and recommended
further research

“There is enough math in finance already, what is missing is imagination.” (Emanuel
Derman)

Diversification is a delicate topic, more than it appears on first sight. On the one hand
it is conceptually simple and transparent, on the other hand it is easier said than done
to guarantee optimally diversified portfolios out-of-sample. Markowitz argued that di-
versification is the only ‘free lunch’ in finance, where one can improve portfolio returns
while reducing risk. In his framework, however, we have shown that (1) the nature of
the risk measure and (2) issues of covariance misspecification, linked to the idiosyn-
cracies of financial data®®, makes us often end up with undiversified and irrationally
behaving portfolios, to the point of entirely offsetting the benefits of optimization [24].

The research question of this paper was to determine which perspective on diver-
sification, assumed in over sixty years of portfolio theory and variance framework
optimization, would work best in an iVaR framework. One classical option is to define
and penalize for concentration. We argued focusing on weight concentration does not
tell us anything about risk concentration, as a well spread portfolio in terms of weights
might be undiversified and vice versa, such that traditional shrinkage is suboptimal.
Penalizing for weighted average covariance is simply an MV-optimization, while pe-
nalizing for average coiVaR is not effective as it increased weight concentration for
a marginal improvement in D;v.r. A second perspective is to define and optimize
for diversification benefits. Benefits are defined as the reduction in risk by combining
assets. A straightforward measure is comparing the portfolio risk with the weighted
instrument risk in a ratio, both from a variance and iVaR perspective. This view-
point, we believe, proves most valuable in an iVaR framework. The third and more
sophisticated approach is to learn a structure in the input data that reveals clusters or
subuniverses that correspond to the most relevant risk sources in the graph. Although
conceptually appealing, recursive use of an optimizer might give away its most attrac-
tive properties and requires additional qualitative validation of the clusters, something
that is not desirable or even possible in e.g. an automated investment solution.

After all the previous comments and tests, we believe MDIP is a valuable enhance-
ment compared to MIP. However, we clearly emphasized every model has its market
environment in which it prevails. During rainy days or extended bear markets MIP
outperforms, while on sunny days or bull markets HiVaR might come out on top.

53Related to both noise and signal/structure ([35] and Appendix 4).
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If the art of diversification is — like in our more philosophical discussion — about
constructing all-weather portfolios the MDIP and MVMIP, with a (purely empirical)
preference for MDIP, are the most reliable portfolio models.

A more nuanced and probably better answer to the research question is that now that
we have constructed a model set with clear insights in when these models work best,
the optimal way to diversify is not to select a single best model but to combine these
models dynamically over time, proportionally to their aptness at that point in time.
Clearly, this increases model complexity assuming we have some predictive ability of
the market environment. The general aim for anyone using these insights for portfolio
construction should be to construct the best data set for estimation and calibration of
the portfolio models, the clustering models, and so forth. Diversified iVaR portfolios
should not be seen as siloed techniques to optimize portfolios but rather as a framework
in which we can embed other financial predictive analytics techniques to, to continue
the analogy, ‘predict the weather’.

As a general conclusion, therefore, the power of having an alternative and potentially
better portfolio algorithm is not merely in the algorithm, it is in the data. In the
end most algorithms will be commoditised, but superior data will always exist. Data
with the characteristics of the graph can help us with constructing better clusters,
data discriminative for the market environment can assist us in attaching posterior
probabilities to trajectories for iVaR calculation, as well as be used to select or combine
the portfolio model(s) that would prevail in that environment, and so and so forth. It
is clear, in line with the informational argument underpinning all rational portfolios
from the introduction, that iVaR optimization is at most a necessary condition for
more rational portfolios, certainly not a sufficient one. If iVaR portfolios do not prove
to give more robust portfolios in practical applications, at least it is a step in the right
direction. Especially with Figure 10 in mind it became apparent that if iVaR can not
make you any money, it will at least save you some.

In terms of limitations, there are a great many more complications and parameters to
take into account once we take this diversified iVaR framework from an experimental
setting to a real-world application like a roboadvisor. These aspects were mentioned
in the text, such as making the algorithm consistent with policies (constraints linked
to mandates or regulations) while avoiding losing the diversification benefits when
applying these hard-coded constraints. Additionally, many other limitations and com-
plications were shortly mentioned in the text: the rebalancing strategy, performance
fees, and other practical humdrum that complicates portfolio models in real-life. More-
over, before deploying the algorithms we would need validation of the results on many
different universes with more assets, such as a multi-asset class universes with indi-
vidual securities instead of (exchange-traded) funds. Recommended further research
should start with tackling the above limitations and tilting the experimental use of
the collection of portfolio algorithms, clustering algorithms, coiVaR and covariance
estimators, et cetera to a more coherent framework. A start for this is given in the
appendices. We could for a start dive deep into dimension reduction and clustering al-
gorithms, and delve deeper than was possible for an MSc thesis. More research should
be done on the mathematical formulations of the problems and the iVaR measures.
How do we optimally calculate a coiVaR matrix? What are the more mathematically
rigorous properties of iVaR, coiVaR and their relationship? If one thing is conclusive
in this paper, then it is that the paper raises more questions than it solves. To quote
Karl Popper: "With every hypothetical solution of a scientific problem both the number
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of unsolved problems and the degree of their difficulty increase. They increase much
faster than do the solutions. And it would be correct to say that whilst our conjectural
knowledge is finite, our ignorance is infinite.”
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V. List of Acronyms

ADD
BTP
CAPM
CDD
CLA
coiVaR
CRM
CTA
CUNY
CVaR
Divar
DU(l’I’
DJIA
EMH
ERC
ES
ETF
EWP
FRTB
GFC
GICS
HCAA
HERC
HivVaR
HRP
IID
1IP
ivaR
IVP
LFP
LnP
LPM
MCP
MCS
MDD
MDIP
MDP
MIP
MP
MPT

MVMIP
MVP
00Ss
PivVaR
PnL

Us
VaR

Average drawdown

Below-target probability

Capital asset pricing model
Conditional drawdown

Critical line algorithm

iVaR codependence measure

Coherent risk measure

Commodity Trading Advisors

City University of New York
Conditional value-at-risk (= ES)

iVaR diversification ratio

Variance diversification ratio

Dow Jones Industrial Average

Efficient market hypothesis

Equal risk contribution

Expected shortfall (= CVaR)
Exchange-traded fund

Equally weighted portfolio
Fundamental Review of the Trading Book
Global Financial Crisis

Global Industry Classification Standard
Hierarchical clustering-based asset allocation
Hierarchical Equal Risk Contribution
Hierarchical iVaR portfolio
Hierarchical risk parity

Independent and identically distributed
Inverse iVaR portfolio

InvestSuite value-at-risk

Inverse variance portfolio or risk parity
Linear-fractional program
Loss-and-profit distribution

Lower partial moment

Most decorrelated portfolio

Model confidence set

Maximum drawdown

Most diversified iVaR portfolio

Most diversified portfolio

Minimum iVaR portfolio
Marcenko-Pastur distribution

Modern portfolio theory

Mean-variance criterion/optimization
Maximum variance, minimum iVaR portfolio
Minimum variance portfolio
Out-of-sample

Penalized iVaR portfolio
Profit-and-loss distribution

Sharpe ratio

United States

Value-at-risk
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VI

Exhibits

Table 7: DJIA weights variance portfolios

MPT MVP IVp HRP HCAA-v MDP MCP EWP ERC
MMM 0.000 0.020 0.040  0.033 0.001 0.000  0.000 0.036  0.036
AXP 0.000 0.000 0.023 0.019 0.001 0.000  0.000 0.036  0.027
AAPL 0.082 0.000  0.027  0.025 0.037 0.040  0.046 0.036  0.032
BA 0.000 0.000 0.014 0.013 0.001 0.078  0.125 0.036  0.023
CAT 0.000 0.000 0.024 0.020 0.001 0.063  0.077 0.036  0.030
CVX 0.000 0.000 0.023 0.018 0.001 0.035 0.043 0.036  0.028
CSCO 0.000 0.000  0.031 0.045 0.043 0.000  0.000 0.036  0.032
KO 0.000 0.199  0.063  0.062 0.053 0.000  0.000 0.036  0.048
XOM 0.000 0.000  0.033  0.028 0.001 0.000  0.000 0.036  0.033
GS 0.000 0.000  0.025 0.031 0.002 0.000  0.000 0.036  0.027
HD 0.001 0.000  0.035 0.029 0.003 0.000  0.000 0.036  0.033
IBM 0.000 0.000 0.036  0.030 0.001 0.000  0.000 0.036  0.034
INTC 0.000 0.000 0.022  0.020 0.031 0.028  0.035 0.036  0.028
JNJ 0.000 0.121  0.068  0.090 0.205 0.000  0.000 0.036  0.047
JPM 0.000 0.000 0.027 0.021 0.002 0.000  0.000 0.036  0.027
MCD 0.074 0.092  0.042 0.034 0.004 0.064  0.059 0.036  0.040
MRK 0.000 0.024 0.045 0.043 0.159 0.086  0.077 0.036  0.044
MSFT  0.500 0.000 0.029 0.025 0.040 0.000  0.000 0.036  0.030
NKE 0.000 0.000 0.030  0.044 0.003 0.065  0.071 0.036  0.034
PFE 0.000 0.097  0.049  0.047 0.173 0.060  0.051 0.036  0.045
PG 0.000 0.038 0.055 0.054 0.046 0.031  0.025 0.036  0.048
RTX 0.000 0.000 0.029  0.027 0.002 0.000  0.000 0.036  0.030
TRV 0.000 0.000  0.037  0.030 0.004 0.000  0.000 0.036  0.035
UNH 0.266 0.000  0.028  0.029 0.007 0.033  0.037 0.036  0.033
vz 0.000 0.233 0.060 0.068 0.051 0.167  0.128 0.036  0.056
\ 0.077 0.000 0.034 0.029 0.046 0.000  0.000 0.036  0.031
WMT 0.000 0.148 0.045 0.051 0.081 0.203 0.179 0.036  0.054
DIS 0.000 0.030 0.034 0.034 0.002 0.047  0.048 0.036  0.035

Items in bold denote high concentration (>20%)
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Table 8: DJIA weights iVaR portfolios

MIP IIP HiVaR-i HiVaR-v  HCAA-iv HCAA-ii MDIP PiVaR MVMIP
MMM 0.000 0.020 0.051 0.072 0.000 0.053 0.057 0.000 0.000
AXP 0.000 0.029 0.034 0.048 0.001 0.008 0.000 0.000 0.000
AAPL 0.054 0.026 0.069 0.036 0.052 0.000 0.034 0.000 0.052
BA 0.000 0.013 0.049 0.028 0.001 0.000 0.000 0.000 0.000
CAT 0.000 0.019 0.037 0.047 0.000 0.032  0.000  0.000 0.000
CVX 0.000 0.033 0.056 0.049 0.001 0.030 0.000 0.000 0.038
CSCO 0.000 0.034 0.026 0.044 0.059 0.000 0.000 0.000 0.000
KO 0.000 0.059 0.033 0.051 0.041 0.001 0.000 0.000 0.000
XOM  0.000 0.025 0.022 0.036 0.001 0.044 0.015 0.000 0.000
GS 0.002 0.021 0.017 0.028 0.001 0.033 0.030 0.000 0.012
HD 0.000 0.042 0.015 0.050 0.003 0.065 0.000 0.000 0.000
IBM 0.000 0.023 0.026 0.050 0.000 0.048 0.072 0.188 0.000
INTC 0.045 0.032 0.032 0.014 0.042 0.007 0.070 0.000 0.096
JNJ 0.000 0.053 0.026 0.033 0.207 0.001 0.000 0.000 0.000
JPM 0.000 0.036 0.062 0.055 0.001 0.000 0.000  0.000 0.000
MCD  0.052 0.045 0.022 0.040 0.004 0.078 0.062 0.119 0.056
MRK  0.110 0.047 0.040 0.050 0.160 0.015 0.080 0.000 0.101
MSFT 0.049 0.056 0.033 0.039 0.055 0.077 0.037 0.106 0.041
NKE 0.097 0.031 0.034 0.036 0.003 0.176 0.154 0.232 0.116
PFE 0.078 0.035 0.043 0.040 0.174 0.004 0.097 0.000 0.093
PG 0.207 0.053 0.056 0.028 0.036 0.018 0.092  0.000 0.167
RTX 0.000 0.033 0.063 0.023 0.001 0.000 0.000 0.000 0.000
TRV 0.000 0.041 0.045 0.027 0.003 0.000 0.000 0.000 0.000
UNH 0.042 0.034 0.028 0.025 0.007 0.002 0.025 0.113 0.031
vz 0.187 0.046 0.024 0.017 0.039 0.005 0.026 0.018 0.111
\% 0.020 0.056 0.022 0.015 0.064 0.089 0.000 0.000 0.017
WMT  0.047 0.027 0.010 0.011 0.041 0.015 0.121 0.224 0.045
DIS 0.010 0.028 0.025 0.011 0.002 0.199 0.027  0.000 0.023

Items in bold denote high concentration (>20%)

Table 9: Average OOS diversification measures

D-Variance D-iVaR
MPT 1.17407 1.68108
MVP 1.37089 1.96133
MIP 1.40667 3.34261
IVP 1.4005 2.92405
IIP 1.37986 2.84318
HRP 1.40623 2.94113
HiVaR-i 1.36935 2.64163
HiVaR-v 1.36139 2.76254
HCAA-v 1.34698 2.37866
HCAA-iv 1.33296 2.46934
HCAA-ii 1.31312 2.51577
MDP 1.48367 2.9783
MDIP 1.41751 3.71356
MCP 1.47321 2.9003
EWP 1.38173 2.84531
ERC 1.40355 2.93217
PiVaR 1.35764 3.25967
MVMIP 1.41748 3.44135

Items in bold denote worst performers

Items in italics denote best-in-class
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Figure 13: Backtesting variance strategies on DJIA (2/2)
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Figure 14: Backtesting iVaR strategies on DJIA (1/2)
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Figure 15: Backtesting iVaR strategies on DJIA (2/2)
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Figure 16: Backtesting cluster strategies on DJIA (1/2)
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Figure 17: Backtesting cluster strategies on DJIA (2/2)

57




Retumns dist (1/2) Returns dist (2/2)

400
400
350
300
300
250
g g 200
2 g
g g
150
100 100
0 0
~0.008 -0.006 -0.004 -0.002 0000 0002 0004 0006 0008 -0.006 -0.004 -0.002 0000 0002 0004 0006
(a) (b)
Sharpe ratio dist (1/2) Sharpe ratio dist (2/2)
25 25 “ - HCAR
20 20
15 15
z z
g §
810 S10
0s 05
00 00
075 -050 -025 000 025 050 075 100 075 -050 -025 000 025 050 075 100

(c) (d)

Figure 18: Simulated return and Sharpe distributions of all portfolios on DJIA
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Table 10: Monthly OOS Performance DJIA, breakdown per year

Return (%)  Volatility (%) Sharpe  Dyqr Divar

2017 MPT 0.918 0.473 1.940803 1.229 2.133
MVP 0.458 0.301 1.521595 1.365 2.529
MIP 0.683 0.356 1.918539 1.367 4.870
IVP 0.522 0.292 1.787671 1.393 3.718
1P 0.587 0.309 1.899676 1.362 3.768
HRP 0.575 0.293 1.962457 1.405 3.714
HiVaR-i 0.531 0.337 1.575668 1.368 3.413
HiVaR-v 0.489 0.331 1.477341 1.369 3.674
HCAA-v 0.942 0.597 1.577889 1.268 1.277
HCAA-iv 0.890 0.520 1.711538 1.324 1.537
HCAA-ii 0.618 0.322 1.919255 1.342 3.198
MDP 0.674 0.345 1.953623 1.439 4.229
MDIP 0.882 0.435 2.027586 1.374 6.942
MCP 0.702 0.357 1.966387 1.431 4.054
EWP 0.565 0.318 1.776730 1.382 3.907
ERC 0.553 0.302 1.831126 1.397 4.024
PiVaR 0.677 0.353 1.917847 1.371 4.983
MVMIP 0.828 0.407 2.034398 1.351 5.282
2018 MPT 0.111 0.972 0.114198 1.254 2.289
MVP -0.042 0.663 -0.063348 1.362 2.460
MIP 0.021 0.795 0.026415 1.342 4.052
IVP -0.071 0.735 -0.096599 1.389 3.268
1P -0.013 0.792 -0.016414 1.360 3.326
HRP -0.053 0.733 -0.072306 1.400 3.340
HiVaR-i 0.034 0.783 0.043423 1.380 3.521
HiVaR-v -0.043 0.767 -0.056063 1.378 3.435
HCAA-v -0.152 0.882 -0.172336 1.272 1.426
HCAA-iv -0.153 0.811 -0.188656 1.357 1.801
HCAA-ii -0.047 0.736 -0.063859 1.369 3.147
MDP 0.052 0.738 0.070461 1.444 3.917
MDIP 0.105 0.826 0.127119 1.386 5.512
MCP 0.046 0.761 0.060447 1.440 3.846
EWP -0.054 0.782 -0.069054 1.382 3.467
ERC -0.050 0.750 -0.066667 1.396 3.505
PiVaR 0.042 0.796 0.052764 1.345 4.091
MVMIP 0.119 0.866 0.137413 1.340 4.155
2019 MPT 0.332 0.653 0.508423 1.260 2.304
MVP 0.475 0.511 0.929550 1.377 2.264
MIP 0.648 0.557 1.163375 1.388 3.991
IVP 0.559 0.531 1.052731 1.390 3.172
1IP 0.590 0.554 1.064982 1.369 3.248
HRP 0.544 0.516 1.054264 1.402 3.156
HiVaR-i 0.552 0.574 0.961672 1.372 3.025
HiVaR-v 0.649 0.586 1.107509 1.371 3.088
HCAA-v 0.434 0.566 0.766784 1.313 2.158
HCAA-iv 0.433 0.544 0.795956 1.347 2.299
HCAA-ii 0.629 0.589 1.067912 1.324 2.808
MDP 0.618 0.505 1.223762 1.452 3.626
MDIP 0.639 0.570 1.121053 1.403 4.733
MCP 0.649 0.525 1.236190 1.449 3.732
EWP 0.604 0.572 1.055944 1.382 3.211
ERC 0.579 0.538 1.076208 1.397 3.307
PiVaR 0.652 0.561 1.162210 1.387 4.015
MVMIP 0.675 0.592 1.140203 1.384 4.045
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Table 11: Monthly average risk measures on the ETF universe

10-d VaR (%)  10-d CVaR (%) MDD AvDD Calmar Burke
MIP -0.585566 -0.811834  0.027725  0.002418  8.109703  1.553425
MDIP -1.180096 -1.625289  0.084793  0.012427  7.402861  1.264630
MVMIP -0.753354 -1.164694  0.044631  0.006234  11.577884  1.876739
HiVaR -2.765513 -3.601728  0.225186  0.037574  4.646394  0.959645
Table 12: iVaR model OOS performance over ETF universe: subsamples
Returns (%) Volatility (%) Sharpe Dyar Divar
2006 MIP 0.176406 0.246141  0.800961  1.013734  7.087910
MDIP 0.221268 0.638560  0.490237  1.031074  4.652842
MVMIP 0.174673 0.276938  0.744123  1.022679  8.951333
HiVaR -0.157494 1.222364  0.074257  1.120880  2.640861
2007-2009  MIP 0.333402 0.344077  1.017839  1.006914  4.608192
MDIP 0.282562 0.721174  0.508734  1.030106  4.794792
MVMIP 0.326265 0.344235  1.021644  1.012947  5.089815
HiVaR 0.092080 1.068940  0.414732  1.032440  3.760455
2010-2012  MIP 0.202989 0.443208  0.475500  1.003429  4.690641
MDIP 0.424070 0.660795  0.698146  1.042997  5.878120
MVMIP 0.287506 0.472158  0.604259  1.019440  6.183981
HiVaR 0.786425 1.182576  0.715720  1.044778  3.699683
2013-2015  MIP 0.144933 0.209665 0.848133  1.003616  3.836165
MDIP 0.325959 0.706086  0.661056  1.041923  6.517812
MVMIP 0.218098 0.398332  0.959033  1.025575  4.841524
HiVaR 0.199003 1.702447  0.129946  1.060772  2.413113
2015-2017  MIP 0.010662 0.132904  0.144158  1.001814  1.214443
MDIP 0.223900 0.638502  0.457232  1.031228  6.245543
MVMIP 0.081785 0.596254  0.288379  1.010434  2.216493
HiVaR 0.562739 1.698658  0.392529  1.048287  2.031052
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VII. Appendix

A. Appendix 1: LPM and VaR

We avoided lengthy formulae in the introduction on risk measures to give the reader
an idea about the history of standard risk measures without getting lost in the details.
We defined LPM, VaR and CVaR more intuitively as:

(a, R) — LPM = % > “max (R —7p,0)" (43)
p=1—cl=Pr(r <VaR,_a(F)) = F(VaR,_a(F)) (44)
CVaRi_a(F) = E(rlr < VaRi_a(F)) (45)

with returns r, return distribution or PnL F(r) and confidence level ¢l. More formally,
we should define LPM as an integral over F' as well:

R
LPMo(R, F) = / (R —r)*dF(r) (46)
and CVaR as: L
OVl a(F) = - / VaR,(F)dy (47)
- 0
Now we find that if a = 0,
R R
LPMy(R,F) = / (R—r)dF(r) = / dF(r) = F(R) (48)
and if we set R = VaR then we can see:
F(R)=1—cl=VaR{',(F) (49)

Moreover, if & = 1, and we again set R = VaR,

R
LPM (R, F) = / (R —r)f(r)dr (50)
VaRi_ ¢ (F)
CVaRi—a = ﬁ[m rf(r)dr (51)

we more clearly see the resemblance between CVaR and LPM of order 1. LPM will
measure the average deviation from the VaR return, while CVaR will measure the
average return below VaR. They are clearly not identical — the denominator 1 — ¢l
and deviation versus actual losses — but they measure the same general idea. Now
the generality of LPM measures is that a can be any rational number, and this will
reflect the investor’s risk aversion (see Fishburn 1977, [7]). The link with drawdown
measures is that they can be seen as dynamic generalizations of this idea, where VaR
and CVaR are mapped on MDD and CDD measures, as to replace VaR functionals on
a static F, by a dynamic AD functional (see Appendix 3 below).
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B. Appendix 2: Coherent risk measures

As we discussed in the main text, coherence is a key concept related to risk measures
that gained wide academic acceptance as well as adoption by practioners. For in-
stance, the change from VaR to ES in new regulation was mainly motivated by VaR’s
lack of subadditivity. Artzner and Delbaen [10] define 5 desirable properties that a
quantitative risk measure p(V') should have — convexity was later added as a 6th and
replaces subadditivity and positive homogeneity:

— Normalisation: if V' = 0 then p(0) = 0, or the risk of an empty portfolio is zero.

— Monotonicity: if V1 < V2 in almost all cases then p(V1) > p(V2), or when
portfolio values V of one portfolio dominate another portfolio almost surely
then the risk should be lower.

— Positive homogeneity: p(AV) = Ap(V),VA > 0, or the risk of a portfolio should
be proportional with its size.

— Translational invariance: p(V + const) = p(V), or adding certain values (such
as cash) to V should decrease risk with the same amount.

— Subadditivity: p(V1 4+ V2) < p(V1) + p(V2), or the risk of portfolios held

together can never be higher than the risk of individual portfolios.

— Convexity: VA € [0,1], p(AV1 + (1 — A)V2) < Ap(V1) + (1 — X)p(V2), or the
risk of a linear combination of V1 and V2 should never be more than the linear
combination of risks. It can be seen from the nature of linear combinations
that the notion of convexity effectively replaces the notion of both subadditivity
(sum) and positive homogeneity (scalar product).

We can conclude from their interpretation that normalisation, monotonicity and trans-
lational invariance are very natural requirements for risk measures, and most of the
classical risk measures (variance, VaR, etc.) have these properties. Convexity, on the
other hand, is not obvious and this has crucial implications for diversification. Con-
vexity tells us that combining assets into a portfolio will never be more risky than
holding them seperately. This was exactly the problem we pinpointed about VaR,
as VaR lacks subadditivity. Variance, CVaR and drawdowns are convex measures of
risk (for which we will provide arguments below) and can therefore be used in our
considerations (e.g. for the calculation of diversification ratios), while incoherent risk
measures cannot.

C. Appendix 3: Drawdown measures are subadditive

Here we will introduce conditional drawdowns (CDD) as a dynamic generalization
of CVaR and use a CVaR-functional’s properties to argue that drawdown measures
are subadditive. The aim of this appendix is not to provide complete, exhaustive
proofs on the properties of drawdown measures, we just want to provide the intuition
behind them as to provide an argument for drawdown’s subadditivity (or a fortiori
convexity). This in order to guarantee that optimizing for diversification, calculating
diversification ratios and so forth would make sense. Indeed, if the sum of the risks
could be smaller than the risk of the sum, all the concepts above would be completely
useless.
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Recall the AD-functional:

AD(V) = (51, ~4-a§T)7£t = magc(VS) -V (52)

s<

Let’s now define the o — CDD as the average of the a% worst drawdowns. To that
extent, we need a threshold ((«) such that a% of elements in AD(V) exceed ((c).
This can be seen as a VaR-functional on AD(V) instead of F(r). We now simply need
the mean of all £ in a set where ¢ is larger than {(«). This is the CVaR functional.
However, a series of drawdowns has a discrete number of elements T, such that it is
very unlikely that we can find the exact a% largest drawdowns. Let’s use ((«) and
define a CVaR-functional from [14]:

CVaR(E) = — > &t (53)

aN £t€O

where © = {&|& > ((a)}, and 7(a, ) an additional term that depends on how much
we have to extrapolate the a% largest drawdown from the discrete series (for more
explanation see [18] and [14]). Now we can just use this logic and say the o« — CDD
is the CVaR-functional applied to the drawdown functional:

o — CDD = CVaR(AD(V)) (54)

In other words, o — CDD is the CVaR of a loss function AD(V) = £ which is dynam-
ically obtained, while CVaR normally uses a static PnL function F(r). CDD is thus
an example of a functional generalizing properties of deviation measures to a dynamic
case. Moreover, expression (54) makes our lives considerably easier in the sense that
we just need the properties of AD and CVaR to discuss those of CDD (and therefore
MDD and ADD).

For AD(V) we can tell from definition (52) that AD is nonnegative, insensitive to
constant shifts, positive homogeneous and convex. The first three properties follow
directly from (52). Convexity means VA € [0,1], AD(AV1+ (1 -A\)V2) < AAD(V1)+
(1 = AN)AD(V2). Again looking at (52) we just have to show that max¢<p(AV1 4+
(1-X)V2) < Amaxi<r(V1)+ (1 — A) max,<7(V2), which is clearly true based on the
properties of the max functional.

We argued CVaR(&) is coherent, having the following properties: normalisation,
monotonicity, positive homogeneity, translational invariance, subadditivity and con-
vexity. For complete proofs see [14]. The point is not to prove this in depth here,
the point is to show that its convexity, together with the convexity of AD and equa-
tion (54), makes the proof that CDD is convex rather trivial: CDD(AV1 + (1 —
ANV2) = CVaR(AD(AV1 + (1 — \)V2) < CVaR(AAD(V1) + (1 — M)AD(V2)) <
ACVaR(AD(V1))+ (1 = N)CVaR(AD(V2)) =AXCDD(V1)+ (1 — A\)CDD(V2).

Now we can easily see that (1) MDD is just the special case of CDD with @ = 0
— or we let the average of the 0% worst drawdowns correspond to the single worst
drawdown — and (2) ADD is the special case where « = 1 — or the average of
all worst drawdowns corresponds with the simple average. We now know drawdown
measures are convex, therefore subadditive, such that we can calculate meaningful
diversification ratios, optimize for them and so forth.
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D. Appendix 4: Some stylized facts about financial cor-
relation matrices

In section II we discussed Markowitz’ Curse and its implications for diversification.
We mentioned matrix conditioning and eigenvalues but avoided lengthy discussions
or formulae. Even without formulae, the key characteristics of financial correlation
matrices (compared to random matrix theory) can be brought back to some stylized
facts [39]:

— The distribution of financial correlations is significantly shifted to the positive,
i.e. most assets are positively correlated.

— Perron-Frobius property: the first eigenvector has positive entries, i.e. all assets
typically have positive exposure to the market.

— Eigenvalues follow the Marcenko-Pastur distribution, with the exception of the
first very large eigenvalue (the market) and a couple of other large eigenvalues
(the industries).

The first two characteristics imply most assets have positive pairwise correlation and
positive betas with the market. From a diversification perspective, this makes ‘smart’
diversification (15) especially important and difficult. The third characteristic is closely
related to the conditioning of the matrix. According to random matrix theory, the
Marcenko-Pastur limit theorem describes the asymptotic distribution of eigenvalues for
the correlation matrix of random independent and identically distributed (IID) data.
The theorem and its eponymous density is illustrated in Figure 23 (a). For multi-
variate financial time series, we typically find that the eigenvalues of their correlation
matrix deviate from the MP density as the first few eigenvalues (market and industries)
are much higher. This is clearly visible in 23 (b). Before, we defined the condition
number as the ratio of maximum and minimum eigenvalues. In our setting, we said
the condition number can be seen as how much the output values of our quadratic
program will change for a small change in the input covariance matrix. The higher
this number, the more instable variance-based methods will be. This third fact thus
explains why this is particularly problematic on financial data.

On the other hand, plot 23 also illustrates the power of shrinkage as a correlation filter-
ing method. The distribution of the eigenvalues exhibits a property called approximate
sparsity®® or a rapid decay in value. This essentially means that there exists a small
group of eigenvectors with large eigenvalues that capture most of the variance in the
data. As a filter, we can leverage this property and shrink covariances and eigenvalues
using the mentioned techniques as to improve the conditioning of the problem. This is
illustrated in Figure 23 (c). Lastly, MP is the distribution for random data, meaning
it also provides us with a upper bound(‘A\;’) for random eigenvalues [5]. This implies
that values higher than this bound can be considered non-random or signal, and the
ones below the bound as noise [35].

54The sorted absolute values of the eigenvalues decay fast enough in values, i.e. the j*
largest absolute value |A|; < j%,a >1/2,Vj
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E. Appendix 5: Tibshirani’s Gap index

For the construction of HCAA clusters, we first determine the optimal number of clus-
ters using the Gap index | ]55. We briefly mentioned that this index maximizes the
gap between the learned structure and the structure obtained on uniformly distributed
data. This was the intuition, because in practice we look for a minimum amount of
clusters such that the reduction of Gap index compared to adding one more cluster
is greater than a standard deviation of all Gap indexes. This is called the Gap iner-
tia of adding new clusters. So in terms of implementation we need random uniform
distribution generation, linkage on our data and random uniform, and select the least
number of clusters that satisfies this inertia idea.

0.7

0.5 06
|

Gap

0.4

Figure 24: Gap index [30]

The exact calculation of the index happens as follows [12]:

— Cluster the observed data, varying the number of clusters from k =1, ..., kmaz,
and compute the corresponding total within intra-cluster variation Wi.

— Generate B reference data sets with a random uniform distribution. Cluster each
of these reference data sets with varying number of clusters & = 1, ..., kmax,
and compute the corresponding total within intra-cluster variation Wiyy.

— Compute the estimated Gap statistic as the deviation of the observed W}, value
from its expected value Wi, under the null hypothesis: Gap(k) = & Eszl log(Wip)—
log(Wy). Compute also the standard deviation of the statistics.

— Choose the number of clusters as the smallest value of k such that the gap
statistic is within one standard deviation of the gap at k+1: Gap(k) > Gap(k +
1) — Sk+1-

55For HRP and simple HiVaR we did not need this as we bisected down to the leaf nodes.
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F. Appendix 6: Alternatives to the sample covariance
matrix

“ Anything merely based on correlation is charlatanism.” (Nassim N. Taleb)

In previous sections, we already delved into the importance of the covariance matrix,
and the hazards of covariance misspecification. We avoided going too deep into the
technicals, not to lose track of the message there (the link between portfolio construc-
tion frameworks and diversification). Now that we hopefully succesfully covered that,
and before we can specify what we did in the code, let’s delve into the options we have
as alternatives to the sample covariance matrix.

We know covariance and correlation modeling is a particularly tricky business. Fi-
nancial mathematician Paul Wilmott calls correlation modeling ‘accidents waiting to
happen’, while Nassim Nicholas Taleb refers to it as ‘charlatanism’. Gunter Meissner,
author of the book ‘Correlation Risk Modeling and Management’, ironically calls it
‘work of the devil’, after the role of copula models in the 2008 CDO crisis. It is clear
why they think so: we reduced all the information in the edges of the full graph to
a single number, causing all kinds of issues with our allocation (cf. supra). However,
we will need a correlation matrix for the comparison of iVaR portfolios with classical
frameworks and as input for hierarchical clustering if we use correlation as similarity.
So what is the best we can do?

Ledoit and Wolf wrote a famous paper Honey, I shrunk the sample covariance matriz,
which introduced shrinkage for the estimation of covariances for asset allocation (in
an MPT framework). It followed their earlier work, where they defined a general
shrinkagﬁ approach as estimating a convex transformation of the sample covariance

matrix X:

. Try
Zshrunk:(l_a)z+a r

1 (55)

Remember from before the issue of conditioning®® was related to the ratio of the largest
and smallest eigenvalue of the empirical or sample covariance matrix. When this ratio
is high, we called 3} ill-conditioned and inverting 3 into the matrix inverse — also
called the precision matrix K — causes high errors such that our eventual solution
is extremely instable. We can reduce this ratio by simply shifting every eigenvalue
according to a given offset®”. This is equivalent to finding the L2-penalized Maximum
Likelihood estimator of the covariance matrix [12]. This just boils down to the expres-
sion above, where we choose the amount of shrinkage by setting «. This depends on a
bias-variance trade-off. A high penalty will reduce variance in the estimates drastically
by reducing the average covariance, but will introduce a lot of bias as well. A small
penalty has the opposite effect. The overall impact of these two effects should be opti-
mal. Ledoit-Wolf (2003) defines optimal as the minimum Mean-Squared Error (MSE)
between the estimated and real covariance matrix. Moreover, in their aforementioned
paper on asset allocation they define the shrinkage estimator generally as:

Eshrunk = (1 - Of)i + aF (56)

where F is any ‘highly structured’ covariance estimator, and the optimal « is deter-
mined through minimizing MSE. Ledoit and Wolf propose the constant correlation

56 Also see Appendix 4
57This is the intuition behind the MP plot in 23 (c)
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model for F. This is the covariance matrix where all correlations are identical.

As an alternative, we could use L1 shrinkage. Remember from a previous discussion
that this allows us to set covariances to exactly zero (or cut edges in the graph), while
L2 penalties cannot. That is why L1 shrinkage on X is called covariance selection.
As we know from the Curse of Dimensionality, especially in the situation in which
N(N-1)/2 is relatively large compared to the TxN observations, sparse L1 covariance
estimators tend to work better than shrunk L2 covariance estimators. In the opposite
situation, or for very correlated data, they can be numerically instable [42][21]. The L1
shrinkage for covariance is implemented in Scikit Learn as a Graphical LASSO (CV)
[21]:

K= min (TrSK — logdetK + of|[K||1) (57)

where K is the precision matrix to be estimated, $ is the sample covariance matrix,
al|K||1 is the sum of the absolute values of off-diagonal coefficients of K [12]. Again
the alpha parameter tunes the sparsity of the precision matrix. In Scikit Learn, we
use GraphicalLassoCV to automatically set the hyperparameter using 10-fold cross-
validation [412].

In conclusion, our code uses and compares three approaches to covariance estimation:
empirical or sample covariance, L2-like Ledoit-Wolf shrinkage and L1-like Graphical
LASSO shrinkage. These alternatives are visualised for the Eurostoxx 50 in Figure 25.

G. Appendix 7: Alternatives to single linkage hierar-
chical clustering

“Assets are characterized in a portfolio by the company they lack.”

Linguist John R. Firth popularized the idea that words in a document are charac-
terized by the company they keep. Words only really have a meaning if they have
a context. This idea is what underlies recent developments in so-called word embed-
dings, where we try to represent words as vectors where words that are often found
close to each other (for semantic or syntactic reasons) are close to each other in a
vector space. Word embeddings are essentially a clustering and dimension reduction
problem. This subchapter zooms in on similar techniques for assets, which we can use
for the implementation of our clusterd-based iVaR portfolios. In contrast to words,
assets in a (diversified) portfolio are characterized by the company they lack. We al-
ready iterated this point many times, but the value of adding an asset to a portfolio is
inversely proportional with how often we find this asset in the company of the assets
already in our portfolio. We could find them in the same supply chain, the same in-
dustry, the same country, the same liquidity bucket and so forth. However, identifying
which assets are similar is much more difficult than words. The input characteristics
to word vectors are simply word counts. The input characteristics to firms is all the
information in the edges of our graph.

Recall the goal of clustering analysis: we observe data from N firms in the graph, and
for each firm i = 1,..., N, we observe a tensor (‘vector of vectors’) of m characteristics
xi = (Tin,---, Zim) , where every xi,; is a time series of T' observations of characteristic
j over time for firm i. The goal of clustering analysis is to group the firms into a
relatively small number of clusters such that:
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Figure 25: Alternatives to the sample covariance matrix
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— every firm i = 1,..., N is a member of one and only one cluster

— two firms i and j in the same cluster have similar observed characteristics x; and
X -

What these characteristics are, how similarity is measured and assessed over the course
of the clustering task, needs further specification. Recall that so far in HRP, we
assumed (1) our characteristics tensor comprises the returns of our firms over time,
(2) similarity is correlation p, and (3) dissimilarity a transformation of correlation (i.e.
proportional to 1 — p). Let’s now first generalize — go broad - and then specify — go
deep.

There are many approaches to clustering: connectivity-based clustering (or hierarchical
clustering), centroid-based clustering (or k-means clustering) and distribution-based
clustering (e.g. Gaussian mixture models). Table 13 provides an overview of these
types of clustering. The two most commonly used approaches to clustering are:

— K-means clustering: we minimize a least-squares objective function of the dis-
tance between firms and a mean vector (centroids) of characteristics. The cen-
troid or mean vector can be seen as a prototypical asset in that cluster.

— Hierarchical Clustering: we use a hierarchical procedure of sequentially forming
clusters (cf. h.).

a. Extending HRP

In h., we took the agglomerative hierarchical clustering approach. This was a
bottom-up approach, where we started with all firms as their own group and then
merged them sequentially. The measure of dissimilarity we used was:

dij = ||di — dj| (58)

or the Euclidean distance between the transformed®® correlation of asset i and j. Given
the dissimilarity measure, we needed a linkage criterion. The linkage is the dissimilarity
we minimize between groups each time we merge two groups®. Recall HRP uses
single linkage, but we realized the Nearest Point Algorithm suffers from chaining.
Alternatively, complete linkage or the Farthest Point Algorithm could be considered.
On its turn, complete linkage suffers from crowding. Because its score is based on the
worst-case dissimilarity between pairs, a point can be closer to points in other clusters
than to points in its own cluster. Therefore, clusters can be too close to each other.
The third ‘canonical’ choice would be average clustering. It gives us very robust results
[34], but average distance is more difficult to interpret. In the code, we tested these
methods — as well as weighted, median and Ward’s linkage — as small extensions to
the HRP model. In summary, the alternatives are:

— Single linkage or the Nearest Point Algorithm:

d(u,v) = min(d(us,v;)) (59)

58d = /2(1 — p)

59 Just to be sure: we always minimize this criterion describing the two groups, but the
definition of this distance can either be the minimum distance between two points from the
groups, maximum distance, average distance, and so and so forth.
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— Complete linkage or the Farthest Point Algorithm:

d(u,v) = maz(d(ui,v;)) (60)
— Average linkage:
5 d(ug, vy)
d(u,v) = —= 61
(o) = G (61)
— Weighted linkage:

d(u,v) = (d(s,v) + d(t,v))/2 (62)
where cluster u was formed with cluster s and t, and v is a remaining cluster.

— Centroid linkage:

d(u,v) = llew = coll2 (63)
where ¢, and ¢, are the centroids of clusters u and v, respectively. Centroids
are the average observations or mean vectors. When two clusters u and v are
combined into a new cluster w, the new centroid is computed over all the original
objects in clusters and w and v. The distance then becomes the Euclidean
distance between the centroid of w and the centroid of a remaining cluster [12].

— Median linkage assigns cZ(u, v) like the centroid method. When two clusters u
and v are combined into a new cluster w, the average of centroids u and v give
the new centroid w.

— Ward’s method minimizes variance as the new entry is computed as follows:

d(u,v) = \/M‘Tﬂd(v, s)% + wd(v,t)2 - %d(s,t)2 (64)
where u is the newly joined cluster consisting of clusters s and ¢, v is an unused
cluster in the forest, T' = |v| +|s|+ |t|, and || is the cardinality of its argument.
This is also known as the incremental algorithm [42].

More important than their plain definition is their direct link with diversification or
weight concentration. Figure 26 from Papenbrock’s thesis ‘Asset Clusters and Asset
Networks in Financial Risk Management and Portfolio Optimization’ [27] summarizes
weight concentration as a spectrum from naive maximum deconcentration portfolios
to cluster-based ‘waterfall’ portfolios using single linkage.

Apart from the issue of chaining inherent to single linkage, we identified two other
issues with the original HRP algorithm in section h.: in the recursive bisection step
the original HRP algorithm (1) only uses the order of assets after clustering, not the
true shape of the dendrogram, and (2) bisects top-down, all the way until every cluster

is an individual asset, which makes it prone to overfitting [34]. In brief, we do not use
the true shape of the dendrogram, nor an optimal number of clusters implied by the
dendrogram. These two issues were resolved by Raffinot [34][36] with the introduction

of a more general HCAA ( Hierarchical Clustering-based Asset Allocation) algorithm.
This model essentially makes two tweaks to the original HRP: (1) perform a top-down
bisection based on the number of assets in the clusters, not just splitting the covariance
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Figure 26: Linkage criterion and concentration [27]

matrix in half each time — which is the natural interpretation of the ‘waterfall’ we
discussed in h. — and (2) calculate an optimal number of clusters using the
Gap index. Essentially, HRP uses the hierarchial tree’s full complexity. Or as Raffinot
argues, bisection all the way to the leaf nodes is overfitting, in the sense that we do not
only use the structure implied by the data, but also attach importance to individual
units.

The determination of an optimal number of clusters C is a common issue in clustering
analysis. Common approaches are the Elbow method (tradeoff C with total within-
group sum-of-squares), silhouette methods (maximizing silhouette values) and Gap
index. The Gap index is generally applicable and a natural choice here. The intuition
behind Tibshirani’s Gap index [12] is essentially that we should maximize the gap
between the learned structure and a structure obtained from uniformly distributed
data. This idea is explained in more detail in Appendix 5.

b. Looking beyond

We now covered and remedied the most important issues about original HRP. But
we did not address the most pertinent question: what exactly are we clustering?
Why do we use correlations and coiVaRs? Why transform historical returns to linear
comovements or codrawdowns in general? Why not try to detect patterns in the
original high-dimensional return or any ‘asset characteristics space’? Essentially, we
are coping with a dimensionality problem. Hierarchical clustering does not fare well
on very high-dimensional spaces (see Table 13). That is one of the main reasons why
we apply clustering on the correlation matrix. But why reduce the similarity of return
vectors to a single number that measures linear comovement?

Essentially, we want to find a structure in the high-dimensional graph data, that
gives hints about the sources in the graph. Before we can deploy that structure in
a hierarchical asset allocation, we need to embed that high-dimensional graph in a
low-dimensional space. The ‘easy’ way to do this is summarize the TxN-dimensional
return space into a NxN covariance matrix with N + N(N-1)/2 unique dimensions.
There are good reasons to do this (as we explained), as well as major drawbacks (as
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Type

Comments

Connectivity-based

Examples
Hierarchical clustering: single
linkage/MST, complete, aver-

age, WPGMA, Ward’s, DBHT

+ Practical and interpretable

- Distance measure (e.g.
Euclidean) preferably in low-
dimensional space

Centroid-based

K-means, K-SVD

+ Simple, practical and inter-
pretable

- No notion of hierarchy, a single
set of clusters with no organiza-
tion or structure within and the
choice of the number of clusters
always happens ex-ante

Distribution-based

Gaussian Mixtures, Multimodel
Mixtures

+ Statistical properties, inter-
pretability parameters

- Parametrical approaches:
choice of distribution and
parameters and often highly
complex in nature

Density-based

DBSCAN, HDBSCAN, OP-
TICS

+ Does not require a-priori
specification of number of clus-
ters (like hierarchical cluster-
ing), works well on noisy data

- Does not work well on high-
dimensional data

Embeddings

(kernel-)PCA, Isomap,
(M)LLE, LTSA, LDS t-SNE,
UMAP, Neural Networks

+ Powerful techniques, es-
pecially  suited for  high-
dimensional data. Possible

to leapfrog correlation as es-
sentially a means of dimension
reduction

- Information loss: be careful
on how to select the infor-
mation/distances to preserve
(example in text).
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we also extensively explained), but there are also alternatives. In essence, we want to
embed the TxN space on a lower-dimensional e.g. SxN space (S << T), that preserves
some of the ‘essence’, i.e. valuable information from the original space. We inevitably
lose information and we have to make an important decision as to what information
we want to keep.

A first natural choice is a simple Principle Component Analysis (PCA). PCA extracts
S linear combinations from the original space that maximize the variance of these
80 while being mutually orthogonal or independent. Therefore, PCA
extracts common factors that explain shared variance of stocks (such as common mar-
ket factors influencing many stocks at the same time). Clustering on PCA output
essentially uncovers which assets are sensitive to similar market factors. Therefore,
identifying assets’ exposure to the first couple of principle components is an often used
technique to assess diversification. However, PCA is a very simple linear method. Ac-
tually, these common factors can be seen as a simple linear econometric panel model
with interactive fixed effects®®. There are 2 major limitation in how PCA sees the
‘essence’ (i.e. variance) of returns: (1) the linearity assumption provides insufficient
structure to capture the non-linear interactions between the data — although we can
use kernel-PCA, that applies linear PCA after non-linear ‘kernel trick’ — and (2)
maximizing variance essentially means maximizing the distance between points in the
low-dimensional subspace for points that were far away in the original space. The lat-
ter limitation is of utmost importance here. Within clusters neighbours should have
similar return characteristics, we do not merely want to to a good job at explaining
differences in returns.

combinations

Since dimension reduction essentially means embedding high-dimensional spaces in
lower-dimensional ones, we have many options that we can borrow from manifold
and even deep learning to tackle this problem: Isomap, LLE, MLLE, LTSA, LDS,
t-SNE, UMAP and neural networks. As we argued, the choice vastly depends on the
topological structures we want to preserve, and the ones we are willing to give up.
In that regard, an interesting approach which we will briefly illustrate here is called
t-distributed stochastic neighbour embedding (t-SNE).

t-SNE uses the probability that two assets are close to each other in terms of returns in
the original space and the probability of finding those assets close to each other in the
lower-dimensional space. Put very briefly, t-SNE minimizes the divergence between
these two probabilities P and @) using the most frequently used divergence measure
for distributions in information theory, the Kullback-Leibler divergence:

§ ) (65)

In more intuitive terms, t-SNE preserves neighbours in the low-dimensional space,
much in contrast to PCA. Stocks with returns that were persistently close to each
other on particular days will be put together. However, further distances in the new
space might not be indicative of far distances in the original space. In terms of our
clusters, this means ‘leaf’ cluster members or neighbours are likely to be preserved
while cross-cluster distances may be more difficult to interpret. Some of the general
topological features can be preserved by initializing t-SNE with PCA values.

Di(PIQ) = 3 Plolog( ("

Q

60T his is closely related to the eigenvalues and -vectors discussed in Appendix 4.
61Such that the conceptual edge over linear correlation is low to non-existent.
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Figure 27 shows a two-dimensional embedding of all S&P500 returns over 5 years
(Jan 2015-2020) using t-SNE with PCA initialization. Figure 28 shows the same plot
with the CIGS sectors as colors. We can tell many neighbours belong to the same
sector, while this is clearly not the only factor to explain return comovement, or a
more adequate term would be ‘co-location’ in this use case.

Next, Figure 30 shows a hierarchical clustering on the embedded space. This allows
us to determine an alternative order in our assets that regroups assets as learned by
our embedding, rather than by correlation. This order can then be used in subsequent
steps such as recursive bisection. However, clustering on embedded output has its
limitations as assets in distant clusters lose their meaning after neighbour embedding.
Although the PCA initiation seems like a quick fix, it is generally unreliable to obtain
a hierarchy from a transformed space. However, the embedding should be seen as
an alternative for correlation modeling which in our portfolio construction framework
merely serves as a means for dimension reduction for similarity measures. Embeddings
thus have obvious limitations, but as a means of reducing some high-dimensional
characteristics space (such as multivariate timeseries of returns) to low-dimensional
similarity measures, they have their utility®>. Moreover, alternatives such as UMAP
— based on Riemannian geometry and algebraic topology — have proven better in
preserving overall topology, i.e. intuitively ‘hacking’ the tradoff of what information
to keep versus throw away.

Figure 29 shows how the correlation matrix of the original, unordered universe is
reordered using the order predicted by embeddings. We see some structure revealing
itself along the diagonal without having calculated correlations to determine this order.
Embeddings learn at least some structure in the data that captures but is not limited
to linear correlations. Whether that is a more meaningful approach than clustering
on correlation or coiVaR is an open question.

In conclusion, embeddings allow us to rearrange and cluster our assets in our horizon
without having to calculate correlations. Their caveats are twofold: (1) we have to
decide which information to throw away when reducing dimensions, and (2) need to be
careful in interpreting distances that were not fully preserved. As a counterargument
to this, however, think about the amount of information we throw away by relying on
linear correlations. Essentially, correlation modeling for hierarchical asset allocation
where we do not use variance as a risk measure is merely a means of dimension re-
duction. The discussion and testing of more clustering methods from Table 13 goes
beyond the scope of this paper, but the clear advantages of these methods open paths
to further research in machine learning diversification. The implemented clustering-
based algorithms can therefore be seen as a framework rather than a ready-to-use
package, and they are easily compatible with more advanced clustering and dimension
reduction techniques, as well as more and better characteristics data to train them on.

62The pros however are clear: dimension reduction can be applied on many more character-
istics than merely (co-)returns or (co-)drawdowns. And the clusters can therefore by design
have more meaning and be more stable, therefore resolving the main issue with variance
clusters.
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Figure 27: Embedding output (Neighbour embedding using t-SNE)
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Figure 28: Embedded neighbours versus sectors
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(a) Original correlation matrix (b) Embedding

(c) HRP

Figure 29: Embeddings and correlation structures
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H. Appendix 8: Quadratic utility and the max Sharpe
ratio portfolio

In our discussion of modern portfolio theory we argued that mean-variance optimiza-
tion, the maximization of quadratic utility for each investor’s risk aversion A, corre-
sponds to the maximum Sharpe ratio portfolio for some critical level of risk aversion
A. This level can be found by solving (11) iteratively, finding the parameter A that
maximizes the objective function. As it is key in the build-up of our argument in
Chapter II, we borrow the proof of [25] to show that this perspective is equivalent to
a direct maximum Sharpe ratio formulation, solvable using the program in 36. Say we
want to obtain a portfolio using (11):

Maximise r’ w — %WTZW (66)

for some constraints g;(w) < 0,¢=1,..., N. Let us now call the expected return p(w)
as a function of w and the portfolio variance o(w) as a function of w as well. As long

as pu(w), o(w) and 523; are convex functions, we can show that the problem:
Maximise M (67)
o(w)
has the same solution as the problem:
Maximise (w) — Ao(w) (68)

for the same constraints g;(w) < 0,4 =1, ..., N, i.e. that \ exists and the two problems
are equivalent.

The gradient of the problem becomes:

—(y(w —lalwu(w)
) = g (69)

Say w* are the optimal weights for problem (67) then the objective part of the Karush-
Kuhn-Tucker conditions,

pw) 1L M)y rlgh(w) =0 70
Vow)  2\/o(w*)o(w?) ( )+§; i 9i(w) (70)

with 7} the optimal dual vector for w*, is the same as the objective part of the KKT

conditions for (68) by setting is dual vector 7> = \/o(w)7r' and our risk aversion A

equal to %’;EX:;

In summary, it is clear that within modern portfolio theory the mean-variance criterion
and maximizing Sharpe ratios are two seperate things, and jumping from the MV
criterion to maximizing Sharpe ratios was a bit sloppy mathematically in the build-
up of our argument. However, we wanted to introduce the MPT problem setting in
an intuitive way without dropping formulas on QPs, efficient frontiers and so forth.
Hopefully this proof shines some light on this matter: maximizing the Sharpe ratio is
a particular MV problem for a critical level of risk aversion, which in portfolio theory
can be seen as the risk aversion of the market as the maximum Sharpe ratio or MPT
portfolio is essentially the optimal market portfolio.
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I. Appendix 9: Ratio objectives as quadratic problems

One small technical problem remaining is that a QP/LP generally does not take a
ratio as an objective function, but only linear and quadratic transformations of the
problem variables — hence the name. Therefore, we again borrow from [25] and
show how we can redefine a ratio problem into a standard QP using a simple variable
transformation.

Say we have a maximum Sharpe ratio problem:

I‘TW

vwIywT

s.t. Aw > b

Maximise
(71)

T
ew=1

The important condition here is that for the optimal weights w* the expected return

rTw* is positive, such that we can set r’w* = % > 0. Call the risk of the optimal

1

portfolio o* then the objective value, the Sharpe ratio, is nothing but

Vo
Now consider the following QP:
Minimize g’ Xg
s.t. rTg =1 (72)
Ag—C¢(b>0
e'g—(¢=0
Given we enforce r’g = 1, g = (w. The objective value is then (?0* = ﬁ which
¢V

is the squared inverse of the objective of (71). Hence, maximizing the Sharpe ratio
is minimizing this objective. If (71) is feasible for an optimal w* and objective SR*

then there exist a solution for (g,¢) in (72) with objective 7.

This formulation paves the road for our required implementations of the MPT and
MDP portfolios as a QP.

J. Appendix 10: Hansen’s Model Confidence Set

For the assessment of our backtest results we used the Hansen 2011 Model Confidence
Set (MCS) approach [26]. Our problem is as follows: we have timeseries of OOS
performance, risk and diversification of our different portfolios and we want to know
which ones significantly out- or underperform. We have called our total pool of models
our model set. Now we want to divide this set into two groups based on a chosen
measuren, each model belonging either to the set of models that do not statistically
differ from the best-in-class in terms of this measure, i.e. belonging to the set of
superior models, or belonging to the inferior group.

So we evaluate our set M with i = 0,...,m models (in our case m=18). Let d; ;,; denote
the difference in loss L between two models i and j at some point t in our backtest:

dij+ = Lit — Lj4 (73)
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where we can define some loss function L as a negative property of portfolios (e.g. risk
measures like volatility, drawdowns, etc.) or the negative of a desirable property (e.g.
returns, Sharpe ratios, etc.).

The set of superior models is defined as [34]:

Mi_o={i€M:Eld,] <0,Vj € M} (74)

The MCS uses a sequential test of loss equivalence [26]. When this test rejects the null
hypthesis, one or more models in the set M is found inferior, such that the model with
the largest average loss differential (see below) is removed from the set. This sequential
procedure is repeated until the null is not rejected anymore and the remaining set
is called the model confidence set Mi_,, depending on the chosen confidence level
cl =1 — « for each hypothesis test [36].

In [26] Hansen et al. prove the use of the following hypothesis and test statistics:

Ho i, ¢ Eldiyje) =0,Vi,5 € My, My € M

75
Ha,uy, @ Eldi ] # 0 for some i,5 € My, (75)

ti; = 7di’jd,

var(ds,j
J( 9) (76)

ti = 71_

var(d;)
where d; = m,%lEjeMk d;,; is the L of the ith model compared to the average loss
across the m’ models in My. d;; = #E;ﬂ:’ldi,j,t measures the relative sample loss

between model i and j [34].

The distributions of the test statistics obviously depend on unknown parameters, such
as the choice of L. Hansen thus proposes a bootstrapped procedure to estimate these
distributions [34].

K. Appendix 11: Corona, the ultimate backtest for di-
versification

As an additional backtest, we compare diversified iVaR portfolios with the market
during the March 2020 coronavirus-induced market turmoil. We look at the badly hit
European equities, and pick as universe the 50 constituent of the Eurostoxx 50 index.

We notice that MIP outperformed during the initial stage of the decline in the end
of February and March. This can be explained by a flight to safety: during extreme
market events traditional diversification does not fair well, because ironically concen-
trations in low risk/iVaR assets preserve capital most effectively during crashes. In
essence, truly diversified allocations are superior over an extended period, or multiple
periods with market uncertainty like we simulated before. During a collapse, concen-
trated low risk allocations outperform, but these assets then significantly underperform
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Figure 31: Portfolio values during Covid-19 market turbulence

Table 14: Monthly OOS performance iVaR models

Return (%) Volatility (%) Sharpe Dyar Divar
MIP -1.83388 4.82871 -0.030714 1.06216 3.51702
MDIP -0.96388 8.52898 0.096088 1.55174  4.28219
MVMIP -0.84091 9.30815 0.213879 2.30610 2.23209
HivVaR -3.26055 6.96595 -0.489072 1.63201 2.75985

when the markets recover with the same pace as they imploded. In other words, during
the contraction the diversified portfolios were overdiversified: (1) MVMIP essentially
because volatility breaks down, (2) MDIP because it is simply contraproductive to
push for higher drawdown assets during a persistent down movement, and (3) HiVaR
is often overdiversified over clusters, even in normal market circumstances. After the
dip MDIP and MVMIP profit from their respective iVaR and volatility boost resulting
in rapid recovery, while MIP and HiVaR miss out on the rally. From Figure 32 we can
say it is remarkable how MDIP is able to achieve similar performance as MVMIP while
having way lower weight concentration. It is unable to create diversification benefits
during the downturn, but spikes afterwards, which explains the competitive perfor-
mance with extremely low weight concentration. MVMIP is naturally most diversified
from a variance perspective, but is most concentrated from an iVaR perspective, which
explains its biggest drawdown.
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