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Abstract

In bear markets, momentum strategies have traditionally outperformed variance-minimi-
zing strategies from a returns perspective thanks to their faster recovery, but have come
at the cost of larger drawdowns, called momentum crashes. Momentum-based invest-
ment strategies have proven to be a persistent way of outperforming market indices
across di↵erent time horizons and market environments. Simultaneously, research on
risk-minimizing strategies has explored new ways of capturing investors’ perceived risk
to replace traditional measures like volatility. The iVaR framework minimizes perceived
risk, calculated as the average drawdown over the investment horizon. We propose a
novel approach that integrates the return-maximizing momentum strategy into the risk-
minimizing iVaR framework in order to reconcile both strategies. We do this by using
a broad range of machine learning (ML) models to classify assets as winners/losers in
a momentum portfolio. This portfolio is then integrated into the iVaR optimization
framework, either by requiring a minimum exposure towards momentum winners in
the resulting portfolio (constraint-based approach), or by adding a second term to the
objective function that minimizes the drawdown relative to the momentum portfolio
(objective-based approach). We validate our methodology empirically and find that both
the constraint- and objective-based approaches of our mixed strategy portfolios outper-
form not only the market, but also single-strategy momentum and iVaR portfolios. This
is true across the majority of ML models, with LSTM giving the best results. Our
findings indicate that a mixed strategy of momentum and iVaR successfully reconciles
both goals of minimizing drawdowns and maximizing returns, and that machine learning
improves momentum portfolio performance.
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Chapter 1

Introduction

Trading o↵ risk and return is every investor’s bread and butter. Although these two
measures are overall positively correlated (Drummen & Zimmermann, 1992), finding a
way to simultaneously optimize for both measures (minimizing risk while maximizing
return) would lead to a superior overall e↵ect. Traditionally, Sharpe ratios have been
the default yardstick used to evaluate the risk-reward trade-o↵. However, the measure is
prone to manipulation by over-promising or under-achieving fund managers (Goetzmann
et al., 2007) and cannot tell up from down (Sortino & Price, 1994), to name only two
of its shortcomings. Innovative ways of modelling risk that take human perceptions of
risk into account solve one side of the equation. Ensuring maximal returns while doing
so solves the other.

In portfolio optimization, several factors can be used to generate investment strategies,
including momentum, value, size, quality and minimum-volatility. On one end of the
spectrum, momentum strategies usually result in high returns, but come at the cost of
high variance (risk). More specifically, the risk of so-called momentum crashes, which
usually occur in market panic states and are therefore contemporaneous with market
rebounds, tend to wipe out much of the accumulated gain. Momentum strategies’ fa-
tal collapse during the Great Financial Crisis (GFC) are a testament to their strong
inherent risk during downturns (Daniel & Moskowitz, 2013). However, their strong
outperformance during periods of post-crisis recovery are tantalizing, with the recent
recovery in markets starting from April 2020 providing a textbook example (Guobužaitė
& Teresienė, 2021). On the other end of the spectrum, minimum-volatility strategies
provide low risk, but fall far behind momentum portfolios, especially when markets are
recovering, as the post-covid market recovery has illustrated (Wigglesworth, 2021).

Therefore, capturing the strong returns that momentum strategies provide while allow-
ing for a human-centric measure of risk forces us to move beyond the generic factor
investment strategies. iVaR portfolio optimization, developed by Belgian fintech com-
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2 CHAPTER 1. INTRODUCTION

pany InvestSuite 1, draws its inspiration from minimum-volatility strategies. However,
instead of optimizing a Sharpe ratio, it will aim to minimize perceived risk, measured as
the cumulative di↵erence between the high-water mark of the portfolio and its current
position.

Both momentum portfolio optimization and iVaR could in their own way be called naive
strategies. On the one hand, momentum-based strategies are considered naive as they
look to outperform by exploiting market anomalies, without taking into account any
form of risk. On the other hand, iVaR is naive in the sense that the algorithm selects a
combination of assets that will yield a minimization of the iVaR measure, without taking
into account the return characteristics of this combination.

This thesis proposes to combine both approaches, with the aim of optimizing the risk-
reward trade-o↵ in a non-traditional way. Instead of optimizing Sharpe ratios by tweak-
ing one of the factor investing strategies, the aim will be to dynamically tilt between the
risk-minimizing iVaR framework, which allows to capture perceived risk, and a returns-
maximizing momentum strategy, based on the di↵erence in performance between the
two strategies. Furthermore, this thesis will argue for the use of Machine Learning (ML)
techniques to construct momentum portfolios, in contrast to the traditional approach
in which momentum portfolios were constructed based on an incrementally improving
combination of model features. We will empirically evaluate the performance of ML
techniques in comparison to traditional linear techniques, both in terms of standalone
classification performance, but also their performance implemented in a backtested port-
folio.

The COVID-19 crisis brought the world to a halt in a way not seen before, and with
that also made investors run for the exit, causing a significant crash in all major global
markets. Soon after, the world again found itself in crisis with Russia going to war
against Ukraine and prices continuing to rise due to a combination of central bank
policy and global supply chain strains. These crises provide an interesting and relevant
way to apply our research findings and demonstrate how our method is able to reduce a
momentum crash through iVaR’s drawdown minimization.

First, chapter 2 will give an overview of the existing literature on (i) momentum port-
folio strategies, (ii) iVaR and (iii) machine learning for portfolio optimization. Then,
the research questions will be outlined in chapter 3. Thirdly, a discussion will follow in
chapter 4 on the data and methodology that are used for generating the optimal mo-
mentum portfolio, implementing it in the iVaR framework and backtesting the results.
Results and discussion are detailed in chapter 5. Lastly, we draw conclusions and provide
suggestions for future research in chapter 6.

1https://www.investsuite.com/



Chapter 2

Literature review

The past decades of financial literature on portfolio optimization have focused on di↵er-
ent aspects of both return and risk characteristics. Research has been centered around
how to construct portfolios that minimize risk, maximize returns, or optimize for the
ratio of both.

On the one hand, an essential challenge in the last century of financial literature has
been to understand, correctly measure and then minimize risk. The notion of “risk”
of a financial asset started in 1952, when Markowitz (1952) introduced the variance of
an asset’s return as the measure of risk in his Modern Portfolio Theory (MPT). Since
Markowitz, many alternatives for risk measurement have been introduced, such as Value
at Risk (VaR), Conditional Value at Risk (CVaR) (Artzner et al., 1999), Conditional
Drawdown at Risk (CDaR) (Chekhlov et al., 2003) and other measures of drawdown.
InvestSuite introduced their own measure of risk, called iVaR, which minimizes what
investors actually perceive as risk, namely long and deep drawdowns.

Next to risk minimization, returns maximization is the second essential driver of port-
folio optimization. One of the seminal strategies in the literature is momentum, which
has been recognized as the most persistent market anomaly. It gives the opportunity
to consistently make profits based on the mispricing of assets. However, it appears
that there has been much less academic literature focused on include momentum as a
determining factor in constructing portfolios to improve the financial performance of
minimum-variance portfolios. For that reason, the challenge within the current aca-
demic landscape is to boost investor returns, possibly using a momentum-related factor,
without making large concessions in the perceived risk of an investor, as measured by
iVaR.

This literature review will dig deeper into (i) optimal portfolio construction, (ii) momentum-
based investment strategies and (iii) measuring portfolio risk, specifically using iVaR.

3



4 CHAPTER 2. LITERATURE REVIEW

Finally, a fourth subsection will look at how machine learning techniques can be used
to address this remaining gap in the academic literature that combines the return opti-
mization of momentum strategies with the risk optimization of iVaR in constructing an
optimal portfolio.

2.1 Selecting the optimal portfolio

The question of how to allocate wealth to a specific set of assets is one that has been
widely researched over a long period of time. Two of the factors that are most recognized
for determining the asset allocation within a portfolio, are expected return and risk.
Markowitz (1952) developed the idea that one can create portfolios by selecting those
assets that optimize the trade-o↵ between risk and return, which is considered to be the
foundation of Modern Portfolio Theory (MPT). Markowitz introduced the concept of
an e�cient frontier, which consists of portfolios of assets that either minimize variance
for a given level of expected returns, or maximize expected returns for a given level of
variance.

A large variety of studies building on these original insights concerning MPT have been
conducted since the 2000s (see Appendix A). However, the central idea of MPT has
remained over time: to construct portfolios that optimize the risk and return preferences
of specific investors.

2.2 Momentum: the most persistent market anomaly

“Momentum is an amazing thing when it is working in your favour.” (Simon Mignolet)

Momentum of financial assets is the phenomenon where asset prices that have risen in
a well-defined historical period are likely to keep rising, whereas asset prices that have
fallen are likely to keep falling. From a mathematical perspective, this means that returns
of financial assets, when observed within a well-defined time frame, are autocorrelated,
as a stock’s past returns are expected to be related to its future returns.

The existence of momentum contradicts the E�cient Market Hypothesis (EMH) (Fama,
1960), which states that all relevant information should be reflected in the share price
and that only new information should move asset prices, implying that historic price
movement should not impact future returns. Therefore, working from the assumption
that markets are e�cient, momentum is said to be a market anomaly that could be
attributed to the irrationality of market participants, which is in sharp contrast with
the condition that all market participants are rational in e�cient markets.
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Momentum in the context of the prices of financial assets is known as one of the most
persistent market anomalies that has been proven to exist across many di↵erent asset
classes, geographies, and time horizons (Hurst et al., 2017; Baz et al., 2015). Momentum-
based investment strategies for financial assets are generally known to take advantage of
the sign and (possibly) magnitude of historical developments of these asset prices, based
on the observation that a recent trend in these prices is likely to continue within a given
time frame.

2.2.1 A brief history of momentum

Despite the availability of data on share prices, the profitability of momentum-based
investment strategies was not covered in academic research until the ’90s. Jegadeesh &
Titman (1993) were the first to demonstrate the profitability of momentum strategies
for a 3- to 12-month holding period between 1965 and 1989, even when accounting for
systematic risk.

Since then, many di↵erent momentum-based investment strategies have been evaluated
across di↵erent markets and time periods. For example, Rouwenhorst (1998) confirmed
this notion of momentum across an internationally diversified equity portfolio for the
medium term. Asness et al. (2013) confirm previous findings by demonstrating consistent
momentum return premia across 8 markets and asset classes. Cao et al. (2020) confirm
the existence of momentum in the Chinese stock markets by empirically proving the
existence of behavioural biases in the historical performance of share prices in terms of
the distinction between “winners” and “losers”, and extreme and mediocre-performing
stocks.

Jegadeesh & Titman (2001) evaluated the possible explanations for the above-mentioned
profitability of momentum strategies as documented by Jegadeesh & Titman (1993).
In doing so, they address the issues raised by Conrad & Kaul (1998) who argue that
momentum exists in the cross-sectional di↵erences between the expected returns of assets
rather than patterns in the time-series data of returns. Hong & Stein (1999) attempted
to explain the existence of momentum by arguing that if there exists any type of under-
reaction due to the slow di↵usion of new information amongst investors in financial
assets, there must be an over-reaction in the longer run as trend-chasers take advantage
of this arbitrage opportunity.

In the literature, two sets of momentum-based strategies are considered, namely cross-
sectional momentum strategies and time-series momentum strategies (Lim et al., 2019).
The first are based on exploiting the relative price developments of winning vs. losing
assets by buying these assets that experienced a relatively stronger positive price de-
velopment (“winners”), whilst selling those assets that experienced a relatively weaker
price development (“losers”) (Jegadeesh & Titman, 1993). This can be done by dividing
a group of assets in terms of their performance, and then selecting a specific proportion
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of these assets to be in the group of winners or losers, e.g., by taking the top and bottom
n% respectively. The second set of strategies is based on the idea that a trend in the
price of an asset is likely to continue if it complies with specific conditions (Moskowitz et
al., 2012). In contrast with the cross-sectional momentum-based strategies, times-series
momentum-based strategies do not build on the idea of dividing a group of assets into
“winners” and “losers”, but rather look for continuation of the price development of a
certain asset in a certain direction.

Cooper et al. (2004) were the first to look at momentum from a time-series angle, when
they argued that the profits of momentum strategies are related to the state of the
market. Related to this paper, Wang & Xu (2010) have proven that recent market
volatility in combination with the market state predict momentum profits within a time-
series context. Moskowitz et al. (2012) introduced time-series momentum (TSM), a new
type of momentum which looks at an individual asset’s past performance. They find
that across a range of asset classes, there is a clear persistence in prices from a 1- to
12-month period in the 25 years prior to the study.

Recently, variations on the traditional cross-sectional momentum and TSM investment
strategies have proven to be profitable. For example, Papailias et al. (2021) introduce
a new type of momentum-based investment strategy called return signal momentum,
which comes down to basing investment decisions on the probability of the signs of past
returns. They show that this strategy outperforms time-series momentum and other
benchmark strategies in terms of higher returns, lower drawdowns and higher Sharpe
ratios. Moreover, they argue that predicting the sign of return forecasts, which comes
down to a binary prediction, could be less prone to overfitting as opposed to predicting a
continuous return forecast. In a di↵erent study, Baltas & Kosowski (2020) show that the
implementation of a novel strategy which involves pairwise signed correlations leads to a
more e�cient volatility estimation and price trend detection. This, in turn, results in a
reduction in portfolio turnover of about one third without a significant loss in expected
returns.

2.2.2 Why momentum matters

In two recent studies conducted to evaluate the predictive relevance of large sets of firm
characteristics to asset pricing, momentum is shown to be one of the only remaining
factors that holds nontrivial predictive power. As shown by Green et al. (2017), only 2
of the 94 firm characteristics in Fama-MacBeth regressions, which are used to estimate
parameters for asset pricing models such as CAPM, have been independent determi-
nants of U.S. monthly stock returns between 2003 and 2014. Freyberger et al. (2020)
further demonstrate that only 9 to 16 out of 62 firm characteristics provide incremental
information for expected returns. For both studies, momentum is one of them.

In the context of the use of machine learning (ML) in asset pricing, momentum is also
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one of the main drivers of return predictions. For example, using deep feed-forward
neural networks based on a set of firm characteristics to predict the cross-section of
stock returns can o↵er attractive risk-adjusted returns compared to a linear benchmark.
Of the 68 firm characteristics examined in a study, momentum appears to be among the
main drivers of return predictions (Messmer, 2017). In their study concerning the use of
ML within the context of asset pricing, Gu et al. (2020) demonstrate that momentum,
together with liquidity and volatility, is one of the dominant predictive signals to all
machine learning methods. Han (2021) further builds on this idea that momentum is
a strong predictive factor when ML is applied to make predictive models based on firm
characteristics. He does this by introducing a novel cross-section predictive model based
on ML, which he proves to outperform o↵-the-shelf ML models. In contrast with other
studies that use a single moment strategy for a range of assets, Han develops a Deep
Momentum model that yields an investing strategy at the individual stock level based
on the nonlinear information from existing asset-related features.

Simple linear regressions and non-linear models used for factor prediction in asset pricing
both suggest that momentum as a market anomaly is as relevant as ever. Recent ap-
plications of ML in the field of asset pricing show promising results for the combination
of momentum-based investment strategies and ML, which we will expand on at a later
stage.

2.2.3 Momentum of groups of financial assets

There is an important distinction between the momentum of an individual asset vs. the
momentum of a group of assets. According to Moskowitz & Grinblatt (1999), much of
the excess returns of individual assets selected based on momentum-based strategies are
attributable to industry momentum. They demonstrate that strategies based on this
industry momentum appear to be highly profitable. Industry momentum refers to the
classification of assets according to their industry and the observation of the momentum
e↵ect at an industry level rather than the individual level. Building on this observation,
O’Neal (2000) confirmed the industry momentum e↵ect by applying momentum-based
investment strategies on top-performing sector mutual funds over the period of 1989
to 1999. Andreu et al. (2013) demonstrate the existence of industry momentum by
making the cross-section of the winners and losers within the space of industry ETFs.
Li et al. (2019) confirm the possibility of extracting industry momentum by testing a
value-weighted long-short strategy based on ETF momentum.

Moreover, by investing in a group of assets rather than in individual assets, it seems
reasonable to believe that we can reach a higher level of diversification, thereby improving
our risk-adjusted returns. ETFs are financial instruments that approximate these groups
of assets, and are often grouped based on constituent characteristics, such as industry,
region or asset type.
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2.2.4 Limitations of current momentum-based investment strategies

The literature identifies 3 major types of drawbacks, namely momentum crashes, de-
pendency of market state, and market cross-section dispersion negatively correlated to
subsequent momentum premium.

Firstly, even though momentum-based investment strategies appear to be very promis-
ing when it comes to the design of portfolios that optimize (risk-adjusted) returns,
momentum-based portfolios can su↵er from major drawbacks that are known as mo-
mentum crashes. Moskowitz et al. (2012) describe these so-called momentum crashes as
infrequent and persistent strings of negative returns that follow market declines when
market volatility is high. They show that over a sample of US equities from 1927 to
2013, momentum crashes are a key and robust feature of momentum-based strategies.
They argue that when poor market conditions ameliorate, following a multi-year market
drawdown and in periods of high volatility, the losing assets are being shorted in large
volumes, resulting in a momentum crash. Finally, as they observe that these crashes are
predictable by means of bear market indicators and ex-ante volatility measures, they
propose a dynamically weighted momentum strategy that doubles that Sharpe ratio of
the static momentum portfolio.

Secondly, Cooper et al. (2004) find that the profitability of moment-based investment
strategies depends significantly on the state of the market. More specifically, momentum
profits appear to be higher post positive market returns as opposed to post negative mar-
ket returns, making momentum-based strategies less fit in periods of market downturn.

Thirdly, Stivers & Sun (2010) found that recent market cross-section dispersion in stock
returns is negatively related to the subsequent momentum premium. As the name sug-
gests, cross-section dispersion in stock returns is a measure for the dispersion of the
return of a particular share from the consensus represented by the market return. Be-
ing negatively correlated to the subsequent momentum premium, this suggests that the
momentum premium could be considered as being procyclical, in line with the findings
of Cooper et al. (2004).

The results of Moskowitz et al. (2012) show that the traditional momentum-based strate-
gies can be significantly improved by considering the major and persistent drawbacks
of momentum portfolios. As most momentum-based strategies covered in the research
mentioned so far do not take into account the minimization of risk, we suggest that there
can be promising results when we attempt to combine the principles of momentum-based
investment strategies with risk-optimization strategies such as iVaR, which will be dis-
cussed extensively in the next part.
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2.3 iVaR: a stress-less alternative to traditional risk mea-
sures

“Using volatility as a measure of risk is nuts. Risk to us is the permanent loss of capital

[. . . ].” (Charlie Munger)

In 1952, Nobel Prize winner Harry Markowitz laid the foundation for the field of re-
search of portfolio optimization with his MPT. As a conception of risk, he used the
concept of variance defined as “the average squared deviation of Y from its expected
value” (Markowitz, 1952, p. 80). In other words, his original measure of risk represented
the dispersion of a particular asset relative to the mean. However, this measure of risk
fails to take into account the direction of the dispersion, since volatility as a measure is
based on the concept of symmetry. Indeed, consistently negative returns are not con-
sidered as risky, while volatile positive returns are. Markowitz later acknowledged the
shortcoming of his risk measure and introduced semi-variance as an alternative, coming
to the realisation that “semi-variance is the more plausible measure of risk” (Markowitz,
1971, p. 374). The concept of semi-variance recognized the importance of downside risk
over upside risk and is a specialized case of the lower partial moment (LPM) (Nawrocki,
1999). The integration of downside into risk measures was further developed by JP Mor-
gan in its 1994 RiskMetrics™ document, describing Value at Risk (VaR) mathematically.

This measure still has several flaws (InvestSuite, 2019). First of all, portfolio risk ac-
cording to Value at Risk can increase with diversification, which illustrates the counter-
intuitive nature of the measure 1. Secondly, VaR requires a certain confidence level ↵
to be set. This choice has a significant e↵ect on the result, which consequently makes
the optimization less robust. Lastly, Value at Risk fails to consider all potential losses
beyond the threshold value, also called the tail risk.

Expected shortfall, also called Conditional Value at Risk (CVaR) or Tail VaR, mitigates
this last shortcoming of regular VaR since it calculates the tail mean of the loss distri-
bution. In contrast to VaR, CVaR is a coherent risk measure as defined by Artzner et
al. (1999). Chekhlov et al. (2003) further build upon CVaR by introducing conditional
drawdown-at-risk (CDaR), which is centered around the concept of drawdown. A draw-
down is a peak-to-trough decline, expressed as the percentage between the peak and
the subsequent trough. Conditional drawdown is the mean of all these drawdowns, or
cumulative losses, above a certain threshold. Other drawdown-based measures of risk
include Maximum Drawdown (MDD), Conditional Drawdown (CDD), and Conditional
Expected Drawdown (CED) (Möller, 2018).

1Imagine a bond trader bound by a VaR limit of x euros with a confidence level c and a horizon T .
If the trader buys bonds from an increasing number of di↵erent issuers or, in other words, diversifies her
portfolio, the probability that one of the bond issuers defaults will at some point be greater than 1� c,
thus resulting in a VaR > 0. However, a completely undiversified portfolio of bonds bought from only
one single issuer will result in a VaR of 0 (Rau-Bredow, 2020).
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Although these measures are mathematically sound and coherent, they still fail to cap-
ture what investors intuitively perceive as investment risk. iVaR, introduced by the
financial technology firm InvestSuite, explicitly aims to address this problem by mini-
mizing what an investor actually perceives as risk. This perceived risk is made up of
three factors: (i) the magnitude of losses, (ii) the frequency of losses, and (iii) the time
it takes to recover to pre-downturn levels.

Traditional volatility- or correlation-based portfolio construction uses historical returns,
generated as the relative di↵erence of prices at times t and t� 1, to calculate expected
return and risk (based on the covariance matrix). These two aspects are then optimized
in combination by using measures such as the Sharpe ratio, which expresses the addi-
tional amount of return that an investor receives per unit of increase in risk (Sharpe,
1966), the Sortino ratio, which corrects for the shortcomings of the Sharpe ratio (Sortino
& Price, 1994), or the Calmar ratio, which is a modification of the Sterling ratio (Young,
1991). iVaR on the other hand uses the possible paths of an instrument in order to
include the time aspect of drawdowns. Mathematically, iVaR will calculate the integral
of all drawdowns over the investment horizon (light pink in Figure 2.1). Based on this, it
will minimize the time-weighted average distance between a set of simulated investment
portfolios and their running maxima. Intuitively, this will result in a time series that
rises as smoothly as possible without sharp falls.

Figure 2.1: iVaR as an average expected drawdown (%) (InvestSuite, 2019)

It is important to note that iVaR does not optimize for maximal returns, which is usually
the case for a portfolio optimization algorithm or solver. Rather, iVaR assumes that by
minimizing losses at any given point in time, overall returns will be higher in the long
run because of the compounding e↵ect. Just like the momentum strategy, it could be
argued that this is a naive approach. Essentially, the idea behind iVaR is not that far
from Warren Bu↵et’s rule 1: “Never lose money.” Indeed, if there is a strong downturn
in a traditional portfolio, higher returns will be needed to compensate for this crash,
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whereas a portfolio optimized on iVaR that can avoid (a larger part of) this downturn
needs lower returns to reach the same final position, since it compounds on a larger basis.
Also, if an instrument had higher returns over the past period, on average it has lower
drawdowns in the future. This suggests a link between iVaR and momentum e↵ects that
shows promise for further examination.

Ex-ante, the optimization problem that minimizes iVaR can be formulated as minimizing
the residuals with regard to monotonic growth. Traditionally, portfolio optimization
makes use of a return space, from which expected returns E(R) and a covariance matrixP

are derived, in order to maximize the Sharpe ratio based on a certain technique for
recursive convex optimization. However, this only considers the end state of the portfolio,
regardless of the intermediate path and thus the size, frequency and duration of losses,
which are essential elements to be included in a measure of perceived risk. Therefore,
iVaR uses a market generator to generate tensors from historical data, which are pre-
estimated simulated trajectories of the instruments. For an N -dimensional universe
of instruments, we have w as the vector of weights wi, i 2 {1, ..., N}. The minimum
drawdown portfolio w

⇤ is the solution to the following linear optimization problem:

min
w

E(⇠a(w))

s.t. ⇠a,t = ma,t �wSt

ma,t � ma,t�1

ma,t � wSt

wI
N = 1

w � 0,

(2.1)

where we minimize the expected drawdown ⇠ as a function of portfolio weights w. The
drawdown ⇠ is a non-linear function of the portfolio pathPt = wSt, ⇠t =max(maxti<t(Pti)�
Pt, 0), but can hence be written as a linear problem by instrument variable mt which
denotes the monotonic growth of the portfolio value mt � wSt.

2.4 Machine learning in portfolio optimization: raising the
linear bar

“It is hard to believe that something as complex as 21st-century finance could be grasped

by something as simple as inverting a covariance matrix.” (De Prado, 2018)

Traditionally, linear methods have dominated the financial literature. By extension, in
the area of empirical asset pricing and portfolio optimization, linear regression-based
strategies have historically been put forward as the standard. However, recent research
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in various subdomains and applications provides strong evidence in favour of the use of
Machine Learning (ML), falling broadly into three use-case categories: (i) constructing
new and superior features, (ii) improving predictive performance, and (iii) designing
problem-specific models.

2.4.1 Constructing new and superior features

The use of ML proves useful on two fronts when it comes to features.

Firstly, it allows to use novel data sources that were once o↵-bounds due to their vast
scale that could not be captured with traditional financial models. For example, Ke
et al. (2019) use Dow Jones Newswire articles, Manela & Moreira (2017) Wall Street
Journal front-page articles, and Obaid & Pukthuanthong (2022) news photos, which are
then fed to ML models.

Secondly, even using standard price data, ML has the potential for both automated
feature extraction and feature selection. Instead of manual construction, selection and
combination of features that form the basis trading rules for portfolio optimization, ML
could generate these rules directly from the data.

Early research into the use of machine learning in finance done by Takeuchi & Lee (2013)
confirms this, finding an improved variant of the momentum e↵ect in individual stock
prices. Messmer (2017) also finds that momentum appears to be among the main drivers
of return predictions in the context of the use of ML in asset pricing. Likewise, Gu et
al. (2020) demonstrate that momentum is one of the dominant predictive signals to ML
methods.

2.4.2 Improving predictive performance

A second use-case for ML is the outperformance of non-linear methods in terms of
predictive performance in recent research (Gu et al., 2020). One approach is to identify
from a large set of features those variables that contain the highest information about
the cross-section of future returns and then feed these into a predictive model. Moritz &
Zimmermann (2016) and Kelly et al. (2019) both use ML to identify these variables, and
subsequently use them to construct portfolios based on these variables, achieving high
model accuracy. On top of its ability to detect features with strong predictive power,
it is also able to capture non-linearities between variables. Oh (2019) demonstrates the
importance of interaction between features in a prediction model and how this e↵ect can
be used to improve model performance.
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2.4.3 Designing problem-specific models

Lastly, ML models can be adjusted or designed specifically for the intricacies of specific
problems in finance. In the field of momentum investing, ML can play a role in mitigating
an inherent shortcoming of momentum strategies, namely the strong risk of occasional
large crashes. As Barroso & Santa-Clara (2015) point out: “In 1932, the Winners-
Minus-Losers (WML) strategy delivered a -91.59% return in just two months. In 2009,
momentum experienced a crash of -73.42% in three months.”

Lim et al. (2019) devise a hybrid class of models that integrate volatility scaling with the
use of deep learning models. They find that an LSTM model generates the best Sharpe
ratios through their ability for trend estimation. This hints at the potential of some ML
models to perform strongly during downturns.

2.4.4 Overview of ML techniques

An overview of the literature on the ML techniques used in our research can be found
in Appendix B.
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Chapter 3

Research questions

Our research will attempt to optimize risk and reward simultaneously in a novel ap-
proach, by combining the use of momentum strategies that aim to maximize returns,
with iVaR optimization that aims to minimize variance.

Our proposed approach aims to innovate on three fronts, around which our research
questions are focused. Firstly, it is based on a more accurate way of capturing investor
risk perception than traditional portfolio optimization techniques such as minimum vari-
ance, by building on the iVaR risk measure. Secondly, our approach explores the poten-
tial of dynamically shifting between a return-maximizing strategy (momentum) and a
risk-minimizing strategy (iVaR). Thirdly, we use machine learning techniques instead of
traditional linear techniques for the construction of momentum portfolios. The sections
below dive deeper into the latter two questions.

3.1 Momentum & iVaR

The second gap in the literature that our research explores is that of combining momen-
tum, a return-maximization strategy, with iVaR, a risk-minimization strategy. More
specifically, our thesis will explore whether and how it is possible to dynamically com-
bine or shift between both strategies depending on the market status. Is there a way
to shift the weight of the portfolio optimization strategy towards risk-reducing iVaR
during a market crash and afterwards transition to a momentum strategy when markets
recover? Our research explores two di↵erent possibilities for introducing a momentum
e↵ect in the iVaR optimization framework.

The first, objective-based method will explore the path of adding a second term to
the objective function (beside the usual iVaR minimization objective function) that

15
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contains a momentum portfolio as a benchmark. The traditional iVaR objective term
will optimize by minimizing the average absolute drawdown, being the top-to-bottom
loss of the portfolio. The second term will also minimize a drawdown, but this time it
is the drawdown relative to a benchmark portfolio that can be passed on, in our case a
momentum portfolio. Because the drawdown is relative (and thus changing over time
based on the performance of the two portfolios relative to each other), essentially a
dynamic weight is allocated to both objective function terms (and thus both strategies),
which gets larger (smaller) as the di↵erence between the iVaR and momentum portfolio
gets larger (smaller). Our hypothesis is that in periods of large drawdown, because the
dynamically allocated weight of the iVaR strategy will increase, it will allow the overall
portfolio to be more resistant to significant drawdowns. During bull market periods, the
momentum strategy will gain a more significant weight, allowing for the overall portfolio
to ride this wave of strong positive returns. Given these two counterbalancing e↵ects, we
expect a combined iVaR + momentum portfolio to relatively outperform on risk/reward
trade-o↵ measures.

The second, constraint-based way of combining iVaR and momentum is to set an ad-
ditional constraint on the iVaR optimizer, which specifies a minimum exposure to a
specific set of assets in the resulting portfolio at each point in time, where we specify
that these assets need to come from the set of winners derived from the momentum
strategy. This will ensure that, while optimizing fully for iVaR as the objective term in
the objective function, we still ensure a minimum representation of momentum assets in
the final portfolio at each point in time.

3.2 Machine learning for momentum

Our research explores how machine learning can play a role in constructing momentum
portfolios. Traditionally, they are constructed using specific momentum indicators, such
as the past performance of assets relative to others, or absolute returns of individual
assets over the past 1 to 12 months (Moskowitz et al., 2012).

However, with ample data available, there could be signals for positive forward returns
in the asset data that are not (fully) captured by ex-ante indicators, but that could
be identified by machine learning techniques that are better suited to predict on large
datasets, with interaction e↵ects or non-linear dependencies. For example, recurrent
neural networks are able to discover patterns in time-series data in the form of informa-
tive deep features, without needing to specify indicators ex-ante. More concretely, we
will explore the use of machine learning techniques that autonomously identify indica-
tors in the available data that prove to be good predictors for (high) positive forward
returns.

Recent literature in the field including Gu et al. (2020) and Choi & Renelle (2019)
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suggests that the use of various ML techniques for portfolio construction can improve
predictive power and as a consequence portfolio performance.
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Chapter 4

Data and methodology

4.1 Overview

Figure 4.1: Methodology: from data selection to back-testing

In the sections below, a more detailed description will be given on the di↵erent steps in
the portfolio optimization pipeline. A high-level overview of the methodology is given
in Figure 4.1.

The first section (step 1 ) lays out the data used for our backtests. In the second section
(step 2 ), more detail is given on the models used to classify assets into momentum “win-
ners” and “losers”, including an explanation on the application of the 8 classification
techniques used in our research. We will also elaborate on how we optimized the hy-
perparameters for the di↵erent models, and which evaluation metrics we used to assess
the quality of these models. The third section (step 3 & 4 ) outlines two approaches we
used to integrate the momentum portfolio into the iVaR framework. In the fourth and
final section (step 5 ), we will explain the procedures applied for evaluating both model
classification and portfolio performance, as well as how we used InvestSuite’s backtest
constructor to run backtests and compare these results against market and pure strategy
benchmarks.

19
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4.2 Data

4.2.1 Data selection, cleaning and transformation

In terms of the financial assets that we will include in our universe to build and test our
models, we will use a list of 103 European ETFs as provided by InvestSuite. The full
list can be found in Appendix D.2. More detail on the selection process, as well as the
cleaning and feature engineering, can be found in Appendix D.1.

4.2.2 Splitting the data into training and test data

Also note that we split the dataset in terms of time instead of training, testing and
deploying the model on the exact same time dimension and splitting the dataset in
terms of ETFs. The reason is that we need out-of-time testing for our model in order to
evaluate the true accuracy measures for 2 di↵erent reasons. Firstly, if we went with the
latter split in the dataset, our model would be prone to picking up the general trends in
the market, classifying the majority of assets as “winners” in a bull period and “losers”
in a bear period to attain a high accuracy. Secondly, as our models are based on looking
at the cross-section of ETF returns within specific time periods, a large chunk of the
information included in the model would be lost if we were to take the cross-section over
a significantly smaller set of assets.

As we will run our model to calculate the momentum portfolio and iVaR optimization
at multiple points in time during the backtest, we will repeat this split at each of these
points in time.

4.2.3 Balancing the training data

Given the nature of the data, in most periods the proportion of financial assets having
positive returns over 30 days is relatively large compared to the proportion with negative
returns. Therefore, measures need to be taken to account for an imbalanced data set.
To resolve this, we will work with cross-sectional momentum, i.e., taking the relative
winners in a given asset universe within a given time period. This allows us to make the
training set balanced by defining the “winners” as being all assets in the 50th percentile
when we order all assets based on their returns in each time period. As such, we split
the training data set in 2 parts that contain an equal number of observations. An
alternative strategy would be to over-sample from the observations defined as absolute
winners. However, this approach would lead to data loss.
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4.3 Classification

In the next step, a momentum portfolio is created that can be fed into the iVaR optimizer.
Momentum portfolios are traditionally implemented as a cross-sectional trading strategy
among individual stocks (Jegadeesh & Titman, 1993; Asness, 1994) or long-only equity
portfolios (Moskowitz & Grinblatt, 1999; Lewellen, 2002). In our backtests, we will
employ a similar cross-sectional strategy, in which the 50th percentile of stocks will be
labeled as ”winners”, whilst the remaining assets will be labeled as “losers”. Gupta &
Kelly (2019) demonstrate that this strategy that buys the recent top-performing factors
performs significantly above traditional stock momentum.

4.3.1 Classification methodology

Our methods will cross-sectionally classify ETFs in the European ETF index into winners
and non-winners using various machine learning techniques, ranging from more standard
methods such as decision trees to more recent and complex techniques including recurrent
neural networks.

In general, we will use a vector of return features X
(i)
t over a specific time period to

predict a target variable:

y
(i)
t = f

⇣
X

(i)
t

⌘
,

where y(i)t can be either the predicted return of asset i in period t or the probability that
asset i is considered a “winner” in period t. The function f will depend on the model
that we use to make this prediction, all of which will be discussed in the subsections
below.

Given the fact that, as we move ahead in time with fixed start date of Dec 31, 2013 in our
observed period, more data becomes available to train and test our model on. This allows
for additional return features that look 1 period further back in every iteration, hence
increasing the number of features and potentially predictive power as well. However,
this would lead to relatively large models that far outgrow the 12-months boundary for
which di↵erent research have found empirically that momentum-based strategies seem
to outperform. Moreover, the generalisability of the results that are found for a specific
time dimensions to di↵erent time dimensions is limited. Therefore, we will keep a fixed,
limited number of time horizons starting from the observation time on which returns
features are constructed. In other words, for each date in our backtest we will look at
the previous n months to build and test our model.
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4.3.2 Prediction methodology

Another way of classifying assets into “winners” and “losers” is to do it indirectly through
a time-series prediction step. For this method, we will use Long Short-Term Memory
(LSTM) and Gated Recurrent Unit (GRU) models (with details on the implementation
of the model below).

The di↵erence with the classification method is that features are not pre-constructed.
Daily price data is fed directly into the model, with a fixed look-back horizon to ensure
trainability and consistency of the model. Batches of price data of the same length,
along with the target variable (the n-day forward price) are passed on to the model for
training. The predicted n-day forward price can then be used to calculate the n-day
forward return, after which a percentile of highest returns can be classified as winners.

4.3.3 Implementation of ML techniques

An detailed overview of the implementation steps for each of the ML models used in our
research is given in Appendix C.

4.3.4 Evaluation of model classification accuracy

To gain insights into how our models perform in terms of predicting future “winners”, we
will use both simple classification accuracy measures such as sensitivity, as well as more
nuanced measures such as Area Under the ROC-curve (AUC). Explanations of these
measures are detailed in Appendix E. Note that we will use the AUC as the primary
measure to evaluate the classification accuracy of our model as this is both scale- and
threshold-invariant, hence making it more consistent to compare results across di↵erent
models and hyperparameter settings.

These accuracy measures will be used to heuristically tweak our model as to maximize
the predictive power of our models, which evidently leads to higher momentum returns.
To be more specific, we will use the AUC as the “scoring” method in the hyperparamter
optimization, which is used to evaluate the performances across di↵erent iterations using
di↵erent sets of hyperparameters. The specifics of this optimization procedure will be
discussed after the following subsection.

4.3.5 Hyperparameter optimization

The classification accuracy of machine learning models can sometimes depend signifi-
cantly on the choice of hyperparamters. Therefore allocating some computational time
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for optimizing model hyperparamers can pay o↵. However, the focus of our research is
not on solely optimizing the classification models, but rather finding an e↵ective balance
between high predictive power with reasonably low computational time. As we will re-
build our model at each iteration in our backtest, we do not want to use computationally
expensive methods such as grid search (systematically sampling hyperparameters in a
grid). Instead, we will use random search to find a set of hyperparameters that can
significantly improve the classifications accuracy, where we let the number of iterations
depend on the time needed to run a random search for each model.

We will use the Area Under the ROC-Curve (AUC) to score the di↵erent sets of hyper-
parameters. As such, the model with the set of hyperparemeters that attains the highest
AUC will be used as the final model at each specific point in time during the backtest.

In Table 4.1 an overview is given of the hyperparameters and ranges on which they are
tuned for the di↵erent models.

Model Hyperparemeter Range

Linear reg No hyperparameters tuned n.a.

Logistic reg No hyperparameters tuned n.a.

Decision Tree Max depth 2, 3 . . . 20
Min samples split 2, 3 . . . 20

Min samples leaf 1, 2 . . . 10

Min weight fraction leaf 0.1, 0.2 . . . 0.5

Max features 0.1, 0.2 . . . 0.9

Max leaf nodes 2, 3 . . . #ETFs

Min impurity decrease 0.01, 0.02, . . . 1

Random Forest No. estimators 0, 50, 100 . . . 1000

Max depth 2, 3 . . . 20

Min samples split 2, 3 . . . 20

Min samples leaf 1, 2 . . . 10

Min weight fraction leaf 0.1, 0.2 . . . 0.5

Max features 0.1, 0.2 . . . 0.9

Max leaf nodes 2, 3 . . . #ETFs

Min impurity decrease 0.05, 0.1, . . . 1

Naive Bayes No hyperparameters tuned n.a.

SVM C 0.1, 1, 10, 100

Gamma scale, auto

Kernel rbf, poly, sigmoid

GBC No. estimators 0, 50, 100 . . . 1000

Max depth 2, 3 . . . 20

Min samples split 2, 3 . . . 20

Min samples leaf 1, 2 . . . 10

Min weight fraction leaf 0.1, 0.2 . . . 0.5
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Max features 0.1, 0.2 . . . 0.9

Max leaf nodes 2, 3 . . . #ETFs

Min impurity decrease 0.05, 0.1, . . . 1

Learning rate 0.01, 0.1, 1, 10, 100

Table 4.1: Hyperparameters and ranges for di↵erent classification techniques

4.4 Combining momentum with iVaR optimization

A final step in our methodology is to integrate the predicted classification of assets in
the iVaR optimization procedure. We identified several di↵erent possibilities for intro-
ducing a momentum e↵ect in the iVaR optimization framework, based on a simplified
representation of the iVaR optimization problem given in Equation 2.1.

4.4.1 Constraint-based approach

In our research, a first approach we have explored is that of adding a constraint to
the iVaR optimizer that specifies the minimum exposure to the class “winners” in the
momentum strategy. In this constraint-based approach, each iVaR-optimized portfolio
will have a minimum exposure to what we have predicted to be winners in a previous
step, making it more likely that the assets included in the portfolio will have a relatively
better return in the following period under the momentum assumption. This would
result in the following optimization problem:

min
w

E(⇠a(w))

s.t. ⇠a,t = ma,t �wSt

ma,t � ma,t�1

ma,t � wSt

wI
N = 1

w⌦ � !

w � 0,

(4.1)

where ⌦ is a binary vector of assets assigned 1 for momentum winners and 0 otherwise,
and ! a threshold value that can be tuned.
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4.4.2 Objective-based approach

Figure 4.2: Multi-objective iVaR optimization

The second approach is that of multi-objective optimization, in which objective terms
are weighed against each other on a Pareto front. In this objective-based approach, a
momentum portfolio is added as a benchmark in a second term in the objective function
for which the iVaR framework will optimize. A fixed a-priori weight is allocated to each
of the two objective function terms (iVaR and the momentum portfolio benchmark), but
the final weight will be dynamic based on the relative di↵erence between the iVaR and
momentum portfolio. For example, when the momentum portfolio is outperforming, the
di↵erence with the iVaR portfolio will be increasingly positive, and therefore so will the
weight of the momentum portfolio. Equally, during a momentum crash, the di↵erence
will be negative, hence the momentum portfolio will have a smaller weight. Figure 4.2
shows the workflow, in which price data over a time horizon T is taken for a universe of N
ETF assets. These are sampled point-of-time and trained on a machine learning model,
giving a momentum portfolio for each time t in T . The absolute iVaR term is derived
from drawdowns on the iVaR portfolio calculated on the ETF price data, the relative
iVaR term is derived from the relative drawdowns compared to the momentum portfolio.
These are then combined in the multi-objective iVaR optimizer, giving a portfolio of M
assets at each time t in the horizon T .

This would result in optimization problem 4.2:
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min
w

�E(⇠a(w)) + (1� �)E(⇠r(w))

s.t. ⇠a,t = ma,t �wSt

ma,t � ma,t�1

ma,t � wSt

⇠r,t = mr,t � (wSt � bSt)

mr,t � mr,t�1

mr,t � wSt � bSt

wI
N = 1

w � 0,

(4.2)

where � is a set weight to the absolute objective term and b the momentum portfolio.

For both methods, we will pass on a dataframe containing all investible assets in a given
period with a classification label for each. Depending on the classification model we
used, we will either end up with exactly 50% of assets being classified as winners (if we
can take the cross-section of predicted returns or predicted probabilities), or with a less
balanced distribution of winners and losers. We will then specify a threshold for the
minimum exposure to assets in the winners class. Note that this minimum constraint
is expressed as an exposure to assets with the winner class, not the absolute number of
winning assets to be included in the iVaR portfolio.

As mentioned before, we will run the iVaR optimization procedure iteratively at each
given moment in our backtest. This means that, in order to have a result that is consis-
tent with the momentum assumption, namely that the observation of these momentum
e↵ects only hold true to specific time periods, the classification exercise is also repeated
each time we repeat the iVaR optimiziation procedure.

4.5 Evaluation

In order to evaluate the overall portfolio performance of the momentum portfolio gen-
erated by the ML model that is then integrated in the iVaR framework, we need a
statistical method that allows us to compare several portfolios.

4.5.1 Relative evaluation of models

Our analysis leads to a set of models based on a variety of machine learning techniques in
the form of time-series data that includes performance, risk and diversification measures.
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We will use the Hansen et al. (2011) Model Confidence Set (MCS) approach to determine
which models under- or outperform relative to others, giving a statistically founded
method of assessing:

(i) How models that combine a momentum and iVaR strategy perform relative to the
market, or simple momentum portfolio and iVaR-optimized portfolios in terms of
risk and return measures;

(ii) How di↵erent momentum portfolios created with machine learning techniques, im-
plemented in an iVaR strategy, perform relative to each other in terms of risk and
return measures.

Appendix F gives a more detailed, mathematical explanation of how Hansen’s MCS
works. Essentially, it gives a set of included models, which comprise all statistically
significantly better models based on the chosen measure, and a set of excluded models
which do not significantly outperform other models in the set of all models.

4.5.2 Evaluation of portfolio returns

Backtest constructor

We will use InvestSuite’s backtest constructor to backtest our investment strategies
over the period of 31-12-2013 until now. In this backtest, a set of portfolio optimizer
objects will be passed, that will be optimized at each given point in time during the
backtest. Corresponding to these portfolio optimizer objects, we will pass on the full
set of investible assets available at that point in time, classified in predicted winner and
loser classes. As such, the full algorithm as elaborated on in the methdology section will
be repeated with the information that we had available at the point in time we would
have made the investment decision.

The backtest constructor optimizes the iVaR portfolio at each point in time, and returns
the resulting portfolio for each timestamp. Next, we can calculate the portfolio value by
passing on a start portfolio of, for example, EUR 1 million.

Benchmarks: iVaR portfolio returns, index and momentum-only portfolio

We can compare the combined momentum and iVaR portfolio with an index that rep-
resents a diversified ETF portfolio (which would correspond to a well-diversified ETF
that invests in all equities available in the ETF univserse), the iVaR portfolio that does
not take into account momentum, and a momentum-only portfolio that represents an
equally weighted portfolio consisting of all assets that have been classified as ”winners”
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in the construction of the combined portfolio. We will visualize these di↵erent portfolios
in 3 di↵erent plot types. One that gives the portfolio value over time, a second that
displays yearly portfolio returns as a bar chart, and a third that displays the drawdown
occurrence frequencies per drawdown percentile.

For the index benchmark, we will use the returns of the iShares Core MSCI Europe
UCITS ETF EUR. As the name suggests, this ETF replicates the index returns of the
MSCI Europe, which consists of 429 stocks with European focus, making it a good proxy
for the overall universe in which most of InvestSuite’s (European) clients are interested
in.



Chapter 5

Results and discussion

Our results show that combining a momentum strategy with the iVaR framework is an
e↵ective investment strategy. This will be demonstrated based on our research findings
in the following sequence. First, we will compare the objective-based and constraint-
based approach of integrating the momentum strategy in the iVaR framework. Then, we
will compare the ML models outlined in the methodology, to see which of these models
will be most e↵ective in predicting momentum portfolios. Lastly, we will evaluate the
performance of the best performing iVaR + momentum portfolio relative to several
benchmarks, to assess if our research methodology is able to outperform market and
pure strategy benchmarks.

5.1 Comparison of constraint-based and objective-based
method

When using the objective-based method, in which we add a second, relative term to
the objective function, we also specify a weight for that additional term (and give the
remaining weight to the iVaR term). Therefore, with weight � assigned to the relative
drawdown term, we get �E(⇠a(w)) + (1 � �)E(⇠r(w)). As can be seen in Figure 5.1,
the higher the weight � to the relative term (that contains the momentum e↵ect), the
stronger the portfolio index performance overall and especially during bull runs, but also
the deeper the drawdown, most visibly during the COVID-related market crash in 2020.
This weight � can be adjusted manually depending on the risk preference of a specific
investor, but it can also be tuned to an optimal level with the best risk-return trade-o↵.

Similarly for the constraint-based method, we can specify the minimum proportion of
winners to be included in the iVaR-optimized portfolio. In picking such a higher pro-
portion, we will get closer to the pure momentum-based portfolio, and on the flip side,
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(a) Objective-based approach: di↵erent replication weights �

(b) Constraint-based approach: di↵erent minimum winners proportions

Figure 5.1: Sensitivity analysis of replication weights / min winners proportion on index
portfolio value for objective- and constraint-based approach

we will get closer to the pure iVaR portfolio in setting this minimum winner proportion
lower.

Before we can compare the results of both the constraint-based and objective-based
methods, we first need to decide on the parameters for each of the methods. As in
both cases we are looking to optimize the trade-o↵ between minimizing drawdown in
downturn periods and maximizing the returns when the market experiences a serious
uptick, we will first look at which parameters will optimize each of the methods for this
trade-o↵.

As shown in Figure 5.1 (a), a replication weight of 0.8 appears to be giving us the best
results in terms of this trade-o↵. This means that in the objective-based method, we
will use a weighting of 0.8 for the term that optimizes for the relative performance of the
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momentum benchmark, whilst a remaining weight of 0.2 will be give to the iVaR term.
For the constraint-based method, Figure 5.1 (b) illustrates that a winners proportion
of 0.8 gives us the best trade-o↵ for the minimum number of winners to be included in
our iVaR optimized portfolio. This means that the iVaR optimizer will be constrained
to picking assets in such a way that at least 80% of the total exposure will be towards
assets that have been classified as winners.

Figure 5.2 demonstrates the di↵erence in performance of the objective- and constraint-
based method. In summary, the objective-based approach more closely resembles the
momentum strategy (due in part to a high replication weight of 0.8), whereas the
constraint-based approach more closely follows the iVaR strategy. However, both strate-
gies have important improvements compared to the single-strategy portfolios. Indeed,
the objective-based approach is able to reduce the deepest drawdowns compared to a
pure-momentum strategy, and the constraint-based approach delivers superior returns
to the iVaR strategy, at similar drawdown.

We will continue to compare our results across the di↵erent methods and benchmarks
using the objective-based method. However, Appendix G contains a full overview of
both the objective- and constraint-based method for each of the models.
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(a) indexed value

(b) yearly returns

(c) drawdowns

Figure 5.2: Comparison of constraint- and objective-based methods for GRU-based port-
folio
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5.2 Comparison of ML models

5.2.1 Stand-alone ML model performance

As detailed in the methodology in subsection 4.3.5, hyperparameter tuning through
random search was done to optimize the ML models. We found that hyperparemter
optimization did not consistently and significantly increase AUC and accuracy across
models, as can be seen in Figure 5.3, even when we ran a high number of iterations
of random search (n = 100). Therefore, we did not dig deeper into fine-tuning these
hyperparemters.

The accuracy and AUC of our models are slightly above 50%. Although this might seem
low for a typical machine learning model problem, it is actually a realistic result. Before
balancing the dataset, accuracies were significantly higher, but this is simply due to the
fact that the stock market has on average, over time and across assets, trended positively,
especially when looking on a longer forward horizon (e.g. 30 days), and hence a model
that predicts all winners would have an accuracy equal to the proportion of winners,
which is (much) higher than 50%. However, this does not give a realistic representation
of the actual predictive power of the model. Therefore, we balanced our dataset to have
an equal number of momentum winners and losers. Furthermore, asset prices on the
stock market follow the random walk hypothesis, meaning that asset price moves are
purely random on an infinitesimal time horizon. The combination of both factors makes
an accuracy of slightly above 50% realistic. As a result, the di↵erence in accuracy and
AUC across our models is relatively small.
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(a) After hyperparemeter optimization (b) Delta before vs. after optimization

Figure 5.3: Median accuracies and AUCs

5.2.2 ML model backtest performance

Although the accuracy and AUC of the di↵erent ML models is not strongly di↵erent, the
resulting performance when implemented in the mixed iVaR + momentum strategy does
strongly diverge. Figure 5.4 gives a visual overview of the performance of the di↵erent
ML models in the iVaR + momentum strategy using the objective-based approach.
Table 5.1 statistically evaluates the performance of this mixed strategy with di↵erent
ML models against several key metrics, giving a more nuanced view of the di↵erent
aspects of portfolio performance. In addition, using the Hansen Model Confidence Set
(MCS) test, we can draw conclusions on the statistically significantly outperforming set
of models.

At first glance, the average monthly return statistics of many of the mixed-strategy
portfolios do not (significantly) beat the benchmark. However, financial performance
should always be viewed from a risk-reward trade-o↵ perspective. Indeed, several of the
mixed-strategy portfolios were able to reach these similar returns but with significantly
lower drawdowns, showing the strong positive impact of the iVaR framework on the
mixed portfolio. This means the models manage to both reduce drawdowns, as well
maximize returns during specific periods. Based on the latter two measures in Table
5.1, it further becomes clear that on a risk-return trade-o↵, the mixed-strategy portfolios
using ML models significantly outperform a simple market benchmark.

Another important finding confirming one of the hypotheses set out in the research
questions and backed by recent literature, is that several (although not all) machine
learning models clearly outperform the linear model. Despite minimal and seemingly
insignificant di↵erences in accuracy measures between models in terms of predicting
winners to include in the momentum portfolio, the performance in backtests is markedly
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(a) indexed value

(b) drawdowns

(c) drawdowns (with cuto↵ -15%) (2)

Figure 5.4: Comparison of di↵erent ML models portfolio performance
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di↵erent and significant.

Finally, comparing individual models, the LSTM-based portfolio performs best when
looking at minimizing drawdowns and maximizing the Calmar and Pain ratios.

Model Returns Max DD Avg. DD Calmar ratio Pain ratio

Linear regression 0.005589* 0.026046 0.009998 1.367413* 6.528987*
Logistic regression 0.003806 0.028046 0.010908 1.259888* 6.117601*
Decision tree 0.005021* 0.024811 0.009567 1.668172* 10.600884*
Random forest 0.005218 0.025160 0.009606 1.511305* 9.394603*
Gaussian naive bayes 0.006394* 0.024595 0.009564 1.433610* 8.526098*
Support vector machines 0.006005* 0.025400 0.009795 1.429352* 8.512710*
Gradient boosting 0.005092 0.024747 0.009488 1.648397* 10.549359*
GRU 0.006228* 0.021652 0.008585 1.590444* 8.707911*
LSTM 0.006189* 0.019936* 0.007837* 1.931698* 16.246320*
ETF benchmark 0.006024* 0.039376 0.014756 1.224212 5.955694

Table 5.1: Overview of average metric values over investment horizon for all ML models;
Models in bold are worst performing, models in italics are best performing; The set of
significantly outperforming models according to Hansen MCS is indicated with *.

5.3 Comparison of portfolio optimization methods

The primary objective of the iVaR optimizer is to minimize the average accumulated
drawdown over the investment horizon. In our backtests, the risk-minimizing behaviour
of iVaR is visible throughout the horizon of the backtest and is most notable in periods
where the market benchmark goes through a significant downturn, such as in the 2020
downturn caused by the COVID pandemic. As a result, in Figure 5.5 (c) we see that
the iVaR model has significantly less episodes of deep drawdowns of 15% or more. This
aligns with iVaR’s goal of minimizing stress for investors. iVaR has less pronounced
troughs, but also less pronounced peaks. It provides an overall stable increasing trend.

The simple momentum portfolio has opposite characteristics, with outsized bull runs but
also strong troughs in downturns, in line with what the literature describes as momentum
crashes (Daniel & Moskowitz, 2013).

Hansen’s MCS test demonstrates that our iVaR + momentum combined portfolio sig-
nificantly outperforms on all measures, being returns, maximum drawdown, average
drawdown, Calmar ratio and pain ratio (depending on the ML used), since at least one
of the mixed-strategy portfolios is included in the set of statistically significantly di↵erent
models compared to the ETF benchmark.

Individual backtests of each of the ML models discussed in section 5.2, compared with
market and single strategy benchmarks, can be found in Appendix G.
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(a) indexed value

(b) yearly returns

(c) drawdowns

Figure 5.5: LSTM-based ML portfolio vs benchmark portfolio performance
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5.4 Discussion

The findings of the results in the sections above allow us to answer the research ques-
tions set out in chapter 3. Indeed, our research shows that our ML models improve
predictive power compared to the linear model, that iVaR is a promising framework for
capturing investor perception of risk by minimizing drawdown, and that integrating a
momentum strategy into the iVaR framework further improves returns, in tandem with
lower drawdowns.

Firstly, our results show that iVaR is successful at reducing drawdowns during a market
downturn. Figure 5.5 demonstrates that during the periods 2015-2016, 2020 and the
latest market crash in 2022, the pure iVaR portfolio has significantly less large drawdowns
(> 10%), which are a primary source of an investor’s perceived risk.

Secondly, our research finds that several models outperform the linear model in backtests,
as illustrated in Figure 5.4 and statistically underpinned in Table 5.1. This confirms that
there is indeed a benefit to stepping away from traditional linear models for portfolio
optimization, as suggested in recent financial literature.

Lastly, our results demonstrate that reconciling the momentum strategy with the iVaR
framework successfully improves returns. Figure 5.5 shows that the momentum + iVaR
portfolio generates strong returns in the period of 2016-2020, thanks to its ability to
allocate a high weight to the momentum strategy. Conversely, in periods of downturn
such as 2020, our mixed strategy is able to re-allocate more weight to the drawdown-
reducing iVaR strategy. In summary, the mixed iVaR + momentum strategy achieves
the goal of following the positive market trends in bull periods more than the traditional
iVaR portfolio, whilst being able to keep the drawdowns fairly limited as opposed to the
market and momentum benchmark.



Chapter 6

Conclusion, limitations and
recommended further research

6.1 Conclusion

Momentum strategies are known to produce strong positive average returns and Sharpe
ratios, with the momentum phenomenon appearing across diverse equity markets and
over a wide range of asset classes. However, they also su↵er from occasional crashes
where the momentum e↵ect is reversed and previous gains are largely o↵set (Daniel &
Moskowitz, 2013).

Our research reconciles the investor objectives of maximizing returns and minimizing
risk through an approach that integrates a momentum portfolio into the drawdown-
minimizing iVaR framework. First, momentum portfolios are generated using various
ML models. Then, they are used either as a constraint, such that a minimum threshold
is set for the number of assets classified as momentum winners at any given time, or as a
dual-objective, such that, besides minimizing absolute drawdown, it also minimizes for
drawdown relative to the momentum portfolio. This essentially creates an optimization
problem that dynamically allocates more weight to the relevant strategy depending on
market conditions.

During several market crashes over the past decade, our backtests demonstrate the rele-
vance of the iVaR optimization framework in reducing strong drawdowns that investors
perceive as a significant risk. Also, it demonstrates the e↵ect of momentum crashes and
how they have a significant negative e↵ect on the cumulative performance of momentum
strategies. Conversely, our research also shows the renewed relevance of the momentum
strategy that is able to rebound from market crashes, as is visible during the bull run
starting mid-2020 and continuing throughout 2021. The fact that these two conflicting
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forces were prominently at play in global markets across asset classes in the past two
years demonstrates the relevance of research that aims to strike a balance between these
e↵ects. Indeed, our research shows that integrating a momentum strategy into the iVaR
framework further improves returns, in tandem with lower drawdowns. Additionally,
ML models improve predictive power compared to the linear model.

6.2 Limitations and further research

Our research findings confirm the importance of exploring the combination of momen-
tum and iVaR strategies to improve returns while minimizing for drawdowns. Further
research could build on our findings by addressing the limitations in the scope of our
methodology in order to further assess the profitability of the combined strategy. We
recommend further work to focus on (i) exploring more ML models, (ii) examining di↵er-
ent conceptual ways of integrating momentum portfolios into the iVaR framework, and
(iii) using predictive techniques to steer the dynamic allocation of the weights between
the momentum and iVaR strategies over time.

Firstly, our methodology allows future research to experiment with other ML techniques,
and pass the resulting momentum portfolio on to the iVaR optimizer. Although our
research covers a wide array of the most used ML techniques, demonstrating the broad
validity of our methodology, it does not provide an exhaustive overview of classification
and prediction techniques to construct momentum portfolios. For example, more recent
and complex techniques like Convolutional Variational Autoencoders (CVAEs) could
be used for prediction. Although the ML techniques covered in our research already
demonstrate outperformance compared to linear models, unexplored models could attain
even stronger performance.

Secondly, further research should be done into the di↵erent ways of integrating mo-
mentum strategies into the iVaR framework. Our research focuses in depth on two of
the possible approaches. Other potential unexplored approaches could include adding
a target return constraint in the iVaR optimizer, or restricting the original universe of
assets to iVaR-optimize with, or exploring the interaction e↵ect between between the
two methods used in this research. Both the objective-based and constraint-based ap-
proach used in this research prove to be e↵ective ways to integrate momentum in the
iVaR framework. Exploring additional approaches could potentially allow for further
performance improvement.

Lastly, future research should address in a more exhaustive way the aspect of switching
dynamically between return-maximizing and risk-minimizing strategies. For example,
Daniel & Moskowitz (2013) demonstrate that market crashes are predictable based on
bear market indicators as well as ex ante volatility, which allows to create a dynamically
weighted momentum portfolio that delivers promising Sharpe ratios across asset classes.
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Future research could look into dynamically switching between the iVaR and momentum
strategies by predicting market downturns using these bear market indicators.



42 CHAPTER 6. CONCLUSION



Appendix A

Portfolio selection literature

During the 1960s, Sharpe (1964), Treynor (1962), Lintner (1965) and Mossin (1966)
developed the Capital Asset Pricing Model (CAPM) based on the idea that not all types
of risk that an asset assumes should be compensated, since some types of risk of an
individual asset can be diversified away when held in a portfolio. The CAPM was the
first coherent framework developed to describe the relationship between the expected
return and risk that cannot be diversified away in a portfolio.

With the increase in available computing power, Elton et al. (1976) showed how an
optimal portfolio can be selected based on a simple ranking mechanism, clarifying the
characteristics that lead to specific assets being included in the optimal portfolio. Most
of these ranking algorithms were based on the estimation of covariances between assets,
which can usually be solved mathematically by inverting matrices.

As these models for optimizing portfolio selection were based on a large number of
inputs that needed to be estimated, there was a need for new models to come up with
these predictions. Index models, which are statistical models that use simple linear
regression to describe asset returns based on one or multiple indices and the sensitivity
of an asset to that index, were introduced to tackle this new issue. The first variation of
these index models, the market model, was developed by Sharpe (1964). Shortly after
Sharpe introduced the single-index (market) model, researchers introduced the multi-
index model in an attempt to better estimate these portfolio optimization inputs:

Rit = ↵i +
X

�ijIjt + eit, i = 1, ..., N,

where Rit is the return of stock I in period t, ↵i is the expected return of security I, �i is
the sensitivity of stock I to index j, Ij is the jth index, J is the total number of indices
employed and eit is the unique risky return of security I in period t (Elton & Gruber,
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1997).

Ross (1978) and Ingersoll (1987) were the first to reformulate the portfolio selection
problem to multi-index models. As such, choosing the optimal portfolio can be reduced
to choosing among portfolios in a multi-dimensional space where one dimension repre-
sents expected return, one dimension represents residual return in case securities can be
mispriced, and the other dimensions each represent a di↵erent beta (Elton & Gruber,
1997). Elton & Gruber (1992) show that in the case where indices cannot be exactly
replicated, securities exist that are theoretically mispriced, and indices are not necessar-
ily normally distributed, each investor can form the optimal portfolio by investing in a
riskless asset and choosing from a number of portfolios equal to the number of indices
generating return plus one.



Appendix B

ML models literature

B.1 Decision trees

Decision trees (DT) are a way to acquire knowledge in the form of a set of discrete
rules, ordered in a tree. Our implementation of this popular discriminatory model uses
an optimized version of the CART algorithm, originally presented by Breiman et al.
(1984). CART is a greedy algorithm based on the earlier C4.5 algorithm (Quinlan,
1996), which in turn was an improvement of the ID3 algorithm (Quinlan, 1979, 1986).
We use CART for a classification tree that predicts relative (non-)winners based on a
range of features derived from the ETF price data. The biggest benefit of DT is that they
are transparent, returning a set of decision rules that give a full and unambiguous view
on the classification process. However, DT are prone to over-fitting. Random Forests
provide a solution to this problem.

B.2 Random forests

Breiman (2001) introduces Random Forests (RF), which consist of multiple randomized
decision trees. RF are used as a meta estimator to improve predictive accuracy and avoid
over-fitting. It averages over a specified number of DTs which are fitted on di↵erent sub-
samples of the data. This makes RFs e↵ectively ensemble methods that uses multiple
simple classifiers (DTs) that would otherwise produce an unstable result across multiple
sample, making the result more robust as the final prediction will be averaged out across
the di↵erent DTs.

The downside main of RFs is that they lose the transparency of DTs, because it is more
di�cult to trace back the classification rules through the large amount of randomized
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DTs.

B.3 Neural networks

The idea of mimicking the brain through Neural Networks (NN) started with the Rosen-
blatt Perceptron, made up of a single artificial neuron (Rosenblatt, 1958, 1961). Multi-
layer perceptrons are more advanced versions of this basic model that allow to incorpo-
rate non-linear e↵ects. As the name suggests, several layers containing neurons can be
combined in various compositions depending on the number of layers and the number
of neurons per layer. Each neuron has a bias b, and each connection between two nodes
has a weight W . Hidden layers use an activation function, such as tanh(·) or sigmoid.

h
(i)
t = tanh

⇣
Whu

(i)
t�⌧ :t + bh

⌘

Z
(i)
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Wzu

(i)
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⌘

The findings of Gu et al. (2020) suggest that Neural Networks (NN), more specifically
3-layer multi-layer perceptrons (MLP), result in the best out-of-sample predictive R

2.
They find that machine learning forecasts of asset prices can significantly increase per-
formance over leading linear methods because of their capacity to include non-linear
predictor interactions. They test a wide array of ML methods ranging from boosted re-
gression trees to various architectures of NNs. Lim et al. (2019) confirm the finding that
neural networks can significantly improve benchmark linear strategies. Choi & Renelle
(2019) combine DL clustering methods and recurrent NN and show a significantly en-
hanced Sharpe ratio.

B.4 Recurrent Neural Networks (RNN): LSTM and GRU

When using neural networks on time-series data, such as stock price data, storing in-
formation over longer times can help uncover patterns over time. RNN have short term
memory, because they use persistent previous information in the current neural network.
However, RNN can experience a loss in information, often referred to as the vanishing
gradient problem (Hochreiter, 1998). After identifying the issue that storing informa-
tion over extended time intervals via recurrent backpropagation takes a very long time
(Hochreiter, 1991), Hochreiter & Schmidhuber (1997) proposed a gradient-based method
to resolve this problem: Long Short Term Memory (LSTM). The LSTM model decides
what information will be stored and what discarded using “gates”. In an LSTM model,
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(a) LSTM (b) GRU

Figure B.1: Illustration of (a) LSTM and (b) gated recurrent unit gating mechanisms
(Chung et al., 2014)

the recurrent weight matrix is replaced by an identify function in the carousel and con-
trolled by a series of gates. Due to the model’s ability to learn long term sequences of
observations, LSTM has become a trending approach to time series forecasting.

The central unit in an LSTM is a memory cell, which gets input from a multiplicative
output gate, and from another multiplicative input gate. The output of memory cell cj
at time t with internal state scj is:

y
cj (t) = y

outj (t)h(scj (t)),

where scj (0) = 0 and scj (t) = scj (t� 1) + y
inj (t)g(netcj (t)) for t > 0.

The di↵erentiable function g squashes netcj ; the di↵erentiable function h scales memory
cell outputs computed from the internal state scj (Hochreiter & Schmidhuber, 1997).

Another important set of RNN that use a type gating mechanism (similar to their LSTM
counterpart) are GRU models. GRU models do not have an output gate and hence have
fewer parameters (Cho et al., 2014). Chung et al. (2014) demonstrate the superiority of
both types of gated units over a simple tanh unit. Relative performance of the LSTM
and GRU model versions depend on the implementation and prediction task.

B.5 (Gaussian) Naive Bayes

Naive Bayes Classification (NBC) is a supervized learning algorithm used for classifica-
tion, based on Bayes’ Theorem, which in simplified notation posits that P (class|data) =
(P (data|class) ⇤ P (class))/P (data), where P (class|data) is the probability of a class
given the provided data. The priors for the class and the data can easily be estimated
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from a training dataset. However, calculating the conditional probability of an observa-
tion given a class would require a vast dataset containing enough observations for each
individual combination of feature values in order to estimate the probability distribu-
tion, making it increasingly intractable as the number of features n increases (Rish et
al., 2001).

Therefore, Naive Bayes relaxes the key assumption that each feature is dependent on all
other features. As such, all conditionally dependent probabilities are dropped, leaving a
simplified feature-independent calculation:

P (class|X1, X2, . . . , Xn) = P (X1|class) ⇤ P (X2|class) ⇤ . . . ⇤ P (Xn|class) ⇤ P (class)

Gaussian Naive Bayes is an extension of Naive Bayes that assumes that the input values
follow a Guassian distribution. As such, it is an extension that allows for real-valued
features of the input variables, as opposed to the probabilities in the model described
above.

B.6 Support vector machines

The work of Boser et al. (1992) and Cortes & Vapnik (1995) laid the foundation for
a supervized classification and regression algorithm that has evolved into what is now
known as Support Vector Machnines (SVM). This class of algorithms is built around
kernel functions, on which convex optimization is applied using statistical learning theory
(Vapnik, 1999).

The essence of SVM is to find a hyperplane that best divides a dataset into two classes.
This surface is called a maximal margin hyperplane, because the surface is chosen such
that it is maximally distant from the two classes. Furthermore, SVM allow for a non-
linear decision boundary in the original data space, by mapping the data into a higher
dimensional feature space in which the decision surface will be linear (Cristianini &
Ricci, 2008).

B.7 Gradient boosting classification

Gradient Boosting is an algorithm that optimizes a di↵erential loss function, for which
in each iteration the negative gradient of the deviance loss function is calculated, on
which subsequently regression trees are fit. The algorithm works by fitting an addi-
tive model (ensemble) in a forward stage-wise manner. In each stage, a weak learner
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is introduced that compensates the shortcomings of existing weak learners: F (X) =
↵1h1(X) + ↵2h2(X) + ... + ↵tht(X), where ↵ is a real value and h is a weak model.
In Gradient Boosting specifically, “shortcomings” are identified by gradients of the loss.
An important benefit of gradient boosting is that it is e↵ective at avoiding under- or
overfitting (Bühlmann & Hothorn, 2007).
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Appendix C

Implementation of ML models

C.1 Linear regression

Our linear regression model will predict the returns of a financial asset for a specific time
period. After we have predicted the return, we can use the same algorithm to determine
whether an asset is a “winner” as used in the feature generation phase of our data. As
such, we will label a given observation as being a “winner” when it belongs to the 50th
percentile of the full universe of assets that we use to build our model on.

This implementation method is chosen over a classification method (where a numerical
value would be predicted with 1 for the winner and 0 for the loser category), because
classification would give a larger error and logistic regression is better suited to a conver-
sion from numerical to binary classification thanks to its target variable limits between
0 and 1.

C.2 Logistic regression

Logistic regression is a second linear method used to predict the classification of assets.
Similar to how we used linear regression for binary classification, we will convert the
target variable from class labels into the probability that a given asset will be labeled a
“winner” or “loser”. As such, we will use a cuto↵ value of 0.5 to determine whether the
model predicts a given observation to be a “winner” after the logistic regression model
has been applied.
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C.3 Decision trees

We used sklearn’s DecisionTreeClassifier to construct a decision tree based on a large set
of hyperparameters. The decision tree classifier is a multi-class classification tool that is
based on the more general decision tree, which is a non-parametric supervized learning
method that predicts the value for a target variable by applying simple decision rules
based on the features. For our specific application, we used the decision tree classifier
as a binary classifier to predict whether each specific asset will be either a winner or a
loser in the following time period.

Similar to what we did in the previous methods, the monthly time features will be used
to predict the future class label. However, for decision trees, we will no longer predict
the probability that a given observation belongs to a class, but rather we will directly
classify all observations in a specific leaf node to its corresponding class. The probability
estimates will still be used in the evaluation of our model accuracy, even though they
will not be used in the actual classification of the assets.

Given the large set of hyperparameters that we could possibly tune to improve the
classification accuracy of our model, we used sklearn’s default parameters for some of
the hyperparameters, whilst we applied hyperparameter optimization techniques to the
most important ones, which will be discussed further in the next section.

C.4 Random forests

Very similar to DTs in terms of application and hyperparameter optimization, we used
sklearn’s RandomForestClassifier to construct a random forest model. As already dis-
cussed in the literature review, RFs are e↵ectively ensemsble methods that combine
multiple DTs that are each based on a specific sub-sample on the data. The final predic-
tion of the RF is the average taken from the di↵erent DTs. For the binary classification
variant, each decision tree predicts a class label and the RF will e↵ectively take the most
occurring class label amongst the predictions from the DTs as the final class label for
the target variable.

We used defaults for some of the hyperparameters, whilst other hyperparameters that
could potentially have a significant impact on the model quality were optimized using
hyperparameter optimization discussed below.

Classification within the DTs will be done exactly the same as how we did this for decision
trees. This means that, based on the time features, we will derive simple decision rules
that will classify assets into one of two classes.
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C.5 (Gaussian) Naive Bayes

Similar to the previous methods, (Gaussian) Naive Bayes will be used to predict the
probability of observations belonging to each class based on a set of return features.
An important note is that Naive Bayes assumes Independence between the features,
which is a strong assumption that we can certainly not make in the case of our return
features as this would be contradictory to our momentum assumption. Nevertheless,
empirical studies have found that Naive Bayes can still be e↵ective for classification when
this independence assumption is violated Rish et al. (2001). As such, we will include
Naive Bayes in our analysis and observe in a later section that indeed, the classification
accuracy will be similar to these of other ML techniques.

C.6 Support vector machines

For SVMs, the methodology in terms of application and hyperparamter optimization
will be almost identical to DT, RF and (Gaussian) NB.

C.7 Gradient boosting classification

For GBC, the methodology in terms of application and hyperparamter optimization will
be almost identical to DT, RF, (Gaussian) NB, and SVMs.

C.8 Recurrent Neural Networks: LSTM and GRU

In our LSTM and GRU architecture, we use stock price data of individual stocks as input
in order to predict a 30-day forward momentum return, which is then cross-sectionally
classified into (non-)winners.

First, the time-series of all instruments are MinMax scaled and pre-processed into batches
with a 360 days look-back period of independent variable train data, complemented with
a 30-day forward price as the dependent variable. Then, we use an architecture with
an input layer, 2 hidden layers, and a dense output layer with the same shape as the
input layer, in order to get parallel predictions for each of the instruments that we feed
into the model. We use Adam, an algorithm for first-order gradient-based optimization
of stochastic objective functions (Kingma & Ba, 2014), with a Mean Squared Error
(MSE) loss function. Predicted prices are then re-scaled and converted to 30-day forward
returns.
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Appendix D

Data

D.1 Data selection and cleaning

The reason we use this specific list is that InvestSuite serves clients that are mainly
looking to invest in a diversified set of equities that are relatively cheap to invest in in
terms of costs. As such, since the large majority of their client base is European, they
mainly look at European listed products, as the costs associated with these are lower
as compared to non-European investible products. Note that these ETFs, despite being
traded on the European markets only, can still cover non-European products. Also,
these ETFs can include (a certain proportion of) non-equity products such as bonds or
cash, for which we will add a constraint to our iVaR optimization for total exposure
in a later stage. More specifically, we will instruct the optimizer to have at least 50%
exposure to equities. This means that for each fund, we will also take into account the
proportion of equity vs. non-equity products that the ETF holds.

Working with ETFs rather than individual assets gives us a high degree of diversification
in our portfolio. As such, we will not worry about diversifying our portfolio and only
focus on the risk-return characteristics of our portfolio as driven by momentum and
iVaR-related metrics.

In this first step of data selection, we will simply load in the daily prices, adjusted for
corporate events such as stock splits and mergers for the constituents of the ETFs. This
data will be pulled from Morningstar and Thomson Reuters using InvestSuites’s existing
modules and licences.
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D.1.1 Treatment of missing values

As our asset universe exists of more than 100 assets, we will choose to simply drop all
assets for which we could not calculate at least one of the returns features as defined
in the subsection below. As the data has already been cleaned to some extent by the
data providers (Morningstar and Thomson Reuters), this will only lead to a very small
reduction of our asset universe, even for longer time periods.

As the reason for data to be missing in our set is most likely the limited lifetime of
some of our assets, we can be confident that removing such observations will not lead to
removing observations with significant impact on the model.

This code will be applied at each iteration of model construction, meaning that as
we move ahead in time, we expect more assets to be included in the model training,
potentially leading to an increasing model quality.

D.1.2 Feature engineering

As discussed above, we are transforming the data for technical reasons: we need to add
return features to the data set to base our predictive models on. In practice, this means
that we will calculate the returns over a given set of time periods (e.g. past month,
the month before that...) and add them to our data set. After replacing the existing
daily returns by these monthly returns, we will end up with a data set consisting of n
historical monthly returns where r represents the number months between the start date
and the date at which we are observing the data.
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Figure D.1: Data set before and after feature engineering

We also ran experiments in which we added a broad range of non-pricing features,
including all qualitative and quantitative asset-related characteristics such as region,
trading volume, asset composition. However, as this did not improved our results in
terms of prediction accuracy measures (AUC) significantly in early stages, we decided to
keep the focus of our research limited to these time features. Moreover, restricting our
results to time features only, we were able to single out the predictive power of returns
in previous time periods for the return in the subsequent time period, hence keeping our
focus to the central idea of momentum. Lastly, taking into account a larger number of
features would significantly increase the computational requirements of classifying the
momentum portfolio and running the corresponding backtests, as this step of predicting
the binary classification occurs at every single step in both procedures.

D.2 ETF list

ISIN ETF Name

LU0629460675 UBS(Lux)Fund Solutions - MSCI EMU Socially Responsible UCITS ETF(EUR)A-dis
LU1681040900 Amundi Index Solutions - Amundi Floating Rate USD Corporate ESG - UCITS ETF...
LU0274211480 Xtrackers DAX UCITS ETF 1C
LU1686830065 Lyxor Index Fund - Lyxor EuroMTS Covered Bond Aggregate UCITS ETF Acc
IE00B579F325 Invesco Physical Gold ETC
IE00B53QG562 iShares VII PLC -iShares Core MSCI EMU UCITS ETF EUR (Acc)
IE00B4M7GH52 iShares MSCI Poland UCITS ETF USD (Acc)
IE00BM67HR47 Xtrackers MSCI World Communication Services UCITS ETF 1C
IE00B8GKDB10 Vanguard FTSE All-World High Dividend Yield UCITS ETF USD Distributing
LU1190417599 Lyxor Smart Cash - UCITS ETF C-EUR
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LU0908508731 Xtrackers II Global Government Bond UCITS ETF 5C
IE00BYXYYL56 iShares $ High Yield Corp Bond UCITS ETF USD (Acc)
DE000A0H0785 iShares Euro Government Bond Capped 1.5-10.5yr UCITS ETF (DE)
LU0524308870 Universal Invest Medium A Acc
IE00B3VWMM18 iShares VII PLC - iShares MSCI EMU Small Cap ETF EUR Acc
LU1681044720 Amundi Index Solutions - Amundi MSCI Switzerland UCITS ETF-C EUR
IE00BM67HS53 Xtrackers MSCI World Materials UCITS ETF 1C
IE00BQQP9H09 VanEck Morningstar US Sustainable Wide Moat UCITS ETF
IE00B4L5Y983 iShares Core MSCI World UCITS ETF USD (Acc)
LU0524307047 Universal Invest Low B Acc
IE00B3B8PX14 iShares Global Inflation Linked Govt Bond UCITS ETF USD (Acc)
IE00BTJRMP35 Xtrackers MSCI Emerging Markets UCITS ETF 1C
IE00BZ0PKT83 iShares Edge MSCI World Multifactor UCITS ETF USD (Acc)
IE00B3VWN393 iShares $ Treasury Bond 3-7yr UCITS ETF USD (Acc)
IE00BP3QZ601 iShares Edge MSCI World Quality Factor UCITS ETF USD (Acc)
IE00BF11F565 iShares Core â

’
¬ Corp Bond UCITS ETF EUR (Acc)

IE00B1TXHL60 iShares Listed Private Equity UCITS ETF USD (Dist)
IE00BF3N7094 iShares â

’
¬ High Yield Corp Bond UCITS ETF EUR (Acc)

IE00BZ0PKV06 iShares Edge MSCI Europe Multifactor UCITS ETF EUR (Acc)
IE00BYXPSP02 iShares $ Treasury Bond 1-3yr UCITS ETF USD (Acc)
LU0322253229 Xtrackers S&P Global Infrastructure Swap UCITS ETF 1C
IE00B48X4842 SPDRÂ® MSCI Emerging Markets Small Cap UCITS ETF
LU0460391732 Xtrackers Bloomberg Commodity ex-Agriculture & Livestock Swap UCITS ETF 2C USD
LU0290357507 Xtrackers II Eurozone Government Bond 15-30 UCITS ETF 1C
IE00B802KR88 SPDRÂ® S&P 500 Low Volatility UCITS ETF
IE00B44Z5B48 SPDRÂ® MSCI ACWI UCITS ETF
BE0146659926 Sivek - Global Medium Cap
FR0010754127 Amundi ETF Euro Inflation UCITS ETF DR
IE00B86MWN23 iShares Edge MSCI Europe Minimum Volatility UCITS ETF EUR (Acc)
IE00BFZPF546 iShares J.P. Morgan EM Local Govt Bond UCITS ETF USD (Acc)
IE00BYVJRP78 iShares MSCI EM SRI UCITS ETF USD (Acc)
BE0146661948 Sivek - Global Low Cap
BE0146932745 BNP Paribas B Strategy - Global Sustainable Conservative Classic-Capitalisation
BE0146934766 BNP Paribas B Strategy - Global Sustainable Defensive Classic-Capitalisation
LU1691909508 Lyxor Global Gender Equality (DR) UCITS ETF - C-USD
IE00B8FHGS14 iShares Edge MSCI World Minimum Volatility UCITS ETF USD (Acc)
IE00B3VWM098 iShares VII PLC - iShares MSCI USA Small Cap ETF USD Acc
BE0131576440 Belfius Fullinvest - Low C Acc
LU0290356954 Xtrackers II Eurozone Government Bond 3-5 UCITS ETF 1C
IE00B4K48X80 iShares Core MSCI Europe UCITS ETF EUR (Acc)
LU1291109616 BNP Paribas Easy Energy & Metals Enhanced Roll UCITS ETF EUR Cap
IE00BM67HK77 Xtrackers MSCI World Health Care UCITS ETF 1C
IE00BM67HL84 Xtrackers MSCI World Financials UCITS ETF 1C
IE00BFM6TB42 iShares Global Corp Bond UCITS ETF USD (Acc)
IE00B5BMR087 iShares Core S&P 500 UCITS ETF USD (Acc)
LU0524311072 Universal Invest High A Acc
LU0478205379 Xtrackers II EUR Corporate Bond UCITS ETF 1C
IE00B3VWN518 iShares VII PLC - iShares $ Treasury Bd 7-10y ETF USD Acc
LU0322250712 Xtrackers LPX Private Equity Swap UCITS ETF 1C
IE00BNH72088 SPDR Refinitiv Global Convertible Bond UCITS ETF
IE00BDGN9Z19 Xtrackers MSCI EMU ESG Screened UCITS ETF 1D
IE00BP3QZ825 iShares Edge MSCI World Momentum Factor UCITS ETF USD (Acc)
IE00BM67HT60 Xtrackers MSCI World Information Technology UCITS ETF 1C
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IE00B8KGV557 iShares Edge MSCI EM Minimum Volatility UCITS ETF USD (Acc)
IE00BM67HV82 Xtrackers MSCI World Industrials UCITS ETF 1C
LU0290355717 Xtrackers II Eurozone Government Bond UCITS ETF 1C EUR
BE0146657904 Sivek - Global High Cap
LU0290356871 Xtrackers II Eurozone Government Bond 1-3 UCITS ETF 1C
LU0952581584 Xtrackers II Japan Government Bond UCITS ETF 1C
IE00BM67HP23 Xtrackers MSCI World Consumer Discretionary UCITS ETF 1C
BE0131577455 Belfius Fullinvest - Medium C Acc
LU0290357259 Xtrackers II Eurozone Government Bond 7-10 UCITS ETF 1C
LU1681038243 Amundi Index Solutions - Amundi Nasdaq-100 ETF-C EUR
LU0489337690 Xtrackers FTSE Developed Europe Real Estate UCITS ETF 1C
IE00BM67HQ30 Xtrackers MSCI World Utilities UCITS ETF 1C
IE00BZ036H21 Xtrackers USD Corporate Bond UCITS ETF 1D
IE00BD4DX952 Xtrackers ESG USD Emerging Markets Bond Quality Weighted UCITS ETF 1D
LU0514695690 Xtrackers MSCI China UCITS ETF 1C
IE00BYVJRR92 iShares MSCI USA SRI UCITS ETF USD (Acc)
IE00BM67HN09 Xtrackers MSCI World Consumer Staples UCITS ETF 1C
IE00B5L01S80 HSBC FTSE EPRA NAREIT Developed UCITS ETF
LU0274209740 Xtrackers MSCI Japan UCITS ETF 1C
IE00BZ0PKS76 iShares Edge MSCI USA Multifactor UCITS ETF USD (Acc)
BE0146936787 BNP Paribas B Strategy - Global Sustainable Neutral Classic-Capitalisation
BE0131578461 Belfius Fullinvest - High C Acc
IE00B52MJY50 iShares VII PLC - iShares Core MSCI Pac ex-Jpn ETF USD Acc
LU0290357176 Xtrackers II Eurozone Government Bond 5-7 UCITS ETF 1C
IE00BLNMYC90 Xtrackers S&P 500 Equal Weight UCITS ETF 1C
LU0838780707 Xtrackers FTSE 100 UCITS ETF 1C
IE00BL25JM42 Xtrackers MSCI World Value UCITS ETF 1C
IE00BYM11K57 UBS (Irl) Fund Solutions plc - MSCI ACWI SF UCITS ETF (hedged to EUR) A-acc
IE00BDFL4P12 iShares Diversified Commodity Swap UCITS ETF
IE00BDT6FP91 SPDR Refinitiv Global Convertible Bond EUR Hdg UCITS ETF (Acc)
IE00BF4RFH31 iShares MSCI World Small Cap UCITS ETF USD (Acc)
IE00BM67HM91 Xtrackers MSCI World Energy UCITS ETF 1C
IE00B2QWDY88 iShares MSCI Japan Small Cap UCITS ETF USD (Dist)
LU0378818131 Xtrackers II Global Government Bond UCITS ETF 1C - EUR Hedged
LU1602144229 Amundi MSCI World Climate Transition CTB - UCITS ETF DR - EUR-C
BE0163304539 BNP Paribas B Strategy - Global Sustainable Dynamic Classic-Capitalisation
IE00BYXYYK40 iShares J.P. Morgan $ EM Bond UCITS ETF USD (Acc)
IE00B44CND37 SPDRÂ® Bloomberg Barclays U.S. Treasury Bond UCITS ETF
LU0322253906 Xtrackers MSCI Europe Small Cap UCITS ETF 1C
IE00BYX2JD69 iShares MSCI World SRI UCITS ETF EUR (Acc)

Table D.1: Full list of European ETFs included in our research
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Appendix E

Evaluation metrics

E.1 Sensitivity

The sensitivity (true positive rate (TPR), recall) is the proportion of winners that we
are able to predict correctly using our classification models. As such, it is calculated as:

TPR =
tp

tp+ fn

E.2 Specificity

The specificity (true negative rate (TNR), selectivity) is the proportion of losers that we
are able to predict correctly using our classification models. As such, it is calculated as:

TNR =
tn

tn+ fp

E.3 1-specificity

The 1-specificity (false positive rate (FPR)) is the proportion of winners that we did not
classify correctly using our classification models. As such, it is calculated as:
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FPR =
fp

fp+ tn
= 1� TNR

E.4 Area under the ROC-curve

The ROC-curve aggregates classification performance across multiple classification thresh-
olds. It plots the sensitivity (true positive rate) against the false positive rate (1-
specificity) for di↵erent levels of the classification threshold. The classification threshold
is the level we use to classify given instances as “winners” vs “losers”, after we have
predicted a probability using our classification models.

The Area under the ROC-curve (AUC) is a classification evaluation metric that gives
the probability that a new instance that is an actual winner will be ranked higher than
an actual loser. In practice, it is calculated as the area under the ROC-curve.



Appendix F

Hansen’s Model Confidence Set

Hansen’s MSC procedure can be used to determine the set of models, V ⇤, that consists
of the best model(s) from a collection of models, V 0, based on a pre-specified criterion,
with a given level of confidence (Hansen et al., 2011). The set of best models can contain
several models in the case where they do not statistically di↵er from the best-in-class
based on the chosen measure.

We define a loss function dij,t = Li,tLj,t between models i and j from our set of models
V

0 at some point in time t in our backtest. Alternative models are then ranked in terms
of expected loss, so that model i is preferred to model j if E(dij,t) < 0. We then define
the set of superior models as:

V
⇤ = {i 2 V

0 for E(dij,t)  0 for all j 2 V
0}.

Therefore, Hansen’s MSC is essentially a sequence of significance tests, where objects
are compared against the null hypothesis H0,V : E(dij,t) = 0 for all i, j 2 V (Hansen et
al., 2011).

In our research, we will evaluate models based on several criteria: returns, maximum
and average drawdown, Calmar and pain ratio. For each of these criteria, the value is
calculated for each of the portfolios at each month over the duration of the backtest,
resulting in a list of values that can then be compared over time using Hansen’s statistical
test. The return statistic is calculated as the simple monthly percentage change in
portfolio value. The maximum drawdown is calculated as the maximum of the percentage
drawdown from the high watermark at that time. Equally, the average drawdown is
calculated as the mean over time of the percentage drawdown from the high watermark.
The Calmar ratio is calculated as the monthly return divided by the monthly maximum
drawdown. The pain ratio is calculated as the monthly return divided by the monthly
average drawdown.
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Appendix G

ML classification-based indexed
portfolio returns, yearly returns
and drawdowns
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G.1 Linear model

(a) Constraint-based: indexed value (b) Objective-based: indexed value

(c) Constraint-based: yearly returns (d) Objective-based: yearly returns

(e) Constraint-based: drawdowns (f) Objective-based: drawdowns

Figure G.1: Linear model
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G.2 Logistic model

(a) Constraint-based: indexed value (b) Objective-based: indexed value

(c) Constraint-based: yearly returns (d) Objective-based: yearly returns

(e) Constraint-based: drawdowns (f) Objective-based: drawdowns

Figure G.2: Logistic model
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G.3 Decision tree model

(a) Constraint-based: indexed value (b) Objective-based: indexed value

(c) Constraint-based: yearly returns (d) Objective-based: yearly returns

(e) Constraint-based: drawdowns (f) Objective-based: drawdowns

Figure G.3: Decision Tree model
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G.4 Random forest model

(a) Constraint-based: indexed value (b) Objective-based: indexed value

(c) Constraint-based: yearly returns (d) Objective-based: yearly returns

(e) Constraint-based: drawdowns (f) Objective-based: drawdowns

Figure G.4: Random Forest model
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G.5 (Gaussian) NB model

(a) Constraint-based: indexed value (b) Objective-based: indexed value

(c) Constraint-based: yearly returns (d) Objective-based: yearly returns

(e) Constraint-based: drawdowns (f) Objective-based: drawdowns

Figure G.5: (Gaussian) NB model
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G.6 SVM model

(a) Constraint-based: indexed value (b) Objective-based: indexed value

(c) Constraint-based: yearly returns (d) Objective-based: yearly returns

(e) Constraint-based: drawdowns (f) Objective-based: drawdowns

Figure G.6: SVM model
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G.7 GBC model

(a) Constraint-based: indexed value (b) Objective-based: indexed value

(c) Constraint-based: yearly returns (d) Objective-based: yearly returns

(e) Constraint-based: drawdowns (f) Objective-based: drawdowns

Figure G.7: GBC model
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G.8 GRU model

(a) Constraint-based: indexed value (b) Objective-based: indexed value

(c) Constraint-based: yearly returns (d) Objective-based: yearly returns

(e) Constraint-based: drawdowns (f) Objective-based: drawdowns

Figure G.8: GRU model
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G.9 LSTM model

(a) Constraint-based: indexed value (b) Objective-based: indexed value

(c) Constraint-based: yearly returns (d) Objective-based: yearly returns

(e) Constraint-based: drawdowns (f) Objective-based: drawdowns

Figure G.9: LSTM model
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